The Development of Superplasticity and Deformation Mechanism Maps in an Ultrafine-Grained Magnesium Alloy

Article Preview

Abstract:

Magnesium alloys with refined grain structure are often superplastic at elevated temperatures with maximum elongations up to more than 1000%. The superplastic behavior of this material agrees with deformation by grain boundary sliding. Dislocation climb becomes the rate controlling mechanism at higher stresses but the rate controlling mechanism at lower stresses is not fully documented. This report examines the development of superplasticity in a magnesium ZK60 alloy and shows that an increase in stress exponent and decrease in elongation takes place at low stresses. Deformation mechanism maps are constructed considering Regions I, II and III and Coble creep.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kawasaki, R.B. Figueiredo, T.G. Langdon, The requirements for superplasticity with an emphasis on magnesium alloys. Adv. Eng. Mater. 18 (2016) 127-131.

DOI: 10.1002/adem.201500068

Google Scholar

[2] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Mater. 47 (1999) 3753-3758.

DOI: 10.1016/s1359-6454(99)00253-0

Google Scholar

[3] W.J. Kim, M.J. Kim, J.Y. Wang, Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Mater. Sci. Eng. A527 (2009) 322-327.

DOI: 10.1016/j.msea.2009.08.064

Google Scholar

[4] J.A. del Valle, P. Rey, D. Gesto, D. Verdera, J.A. Jimenez, O.A. Ruano, Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater. Sci. Eng. A628 (2015) 198-206.

DOI: 10.1016/j.msea.2015.01.030

Google Scholar

[5] Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng. A420 (2006) 240-244.

DOI: 10.1016/j.msea.2006.01.043

Google Scholar

[6] M. Kai, Z. Horita, T.G. Langdon, Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A488 (2008) 117-124.

DOI: 10.1016/j.msea.2007.12.046

Google Scholar

[7] W. -J. Kim, S.W. Chung, C.S. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater. 49 (2001) 3337-3345.

DOI: 10.1016/s1359-6454(01)00008-8

Google Scholar

[8] H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg-Al-Zn alloys. Mater. Sci. Eng. A 407 (2005) 53-61.

DOI: 10.1016/j.msea.2005.06.059

Google Scholar

[9] R.B. Figueiredo, T.G. Langdon, The characteristics of superplastic flow in a magnesium alloy processed by ECAP. Int. J. Mater. Res. 100 (2009) 843-846.

DOI: 10.3139/146.110102

Google Scholar

[10] M. Kawasaki, S. Lee, T.G. Langdon, Constructing a deformation mechanism map for a superplastic Pb-Sn alloy processed by equal-channel angular pressing. Scr. Mater. 61 (2009) 963-966.

DOI: 10.1016/j.scriptamat.2009.08.001

Google Scholar

[11] R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43 (2008) 7366-7371.

DOI: 10.1007/s10853-008-2846-0

Google Scholar

[12] R.B. Figueiredo, T.G. Langdon, Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal-channel angular pressing. Metall. Mater. Trans. 45A (2014) 3197-3204.

DOI: 10.1007/s11661-013-1920-7

Google Scholar

[13] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[14] H. Ishikawa, F.A. Mohamed, T.G. Langdon. The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid. Phil. Mag. 32 (1975) 1269-1271.

DOI: 10.1080/14786437508228105

Google Scholar

[15] F.A. Mohamed, T.G. Langdon. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 22 (1974) 779-788.

DOI: 10.1016/0001-6160(74)90088-1

Google Scholar

[16] S.S. Vagarali, T.G. Langdon. Deformation mechanisms in H.C.P. metals at elevated temperatures-I Creep behavior of magnesium. Acta Metall. 29 (1981) 1969-(1982).

DOI: 10.1016/0001-6160(81)90034-1

Google Scholar

[17] R.L. Coble. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34 (1963) 1679-1682.

DOI: 10.1063/1.1702656

Google Scholar

[18] D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scr. Metall. 3 (1969) 927-930.

DOI: 10.1016/0036-9748(69)90243-9

Google Scholar

[19] M. Kawasaki, T.G. Langdon. Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. J. Mater. Sci. 47 (2012) 7726-7734.

DOI: 10.1007/s10853-012-6487-y

Google Scholar

[20] M. Kawasaki, T.G. Langdon. The many facets of deformation mechanism mapping and the application to nanostructured materials. J. Mater. Res. 28 (2013) 1827-1834.

DOI: 10.1557/jmr.2013.55

Google Scholar