[1]
M. Kawasaki, R.B. Figueiredo, T.G. Langdon, The requirements for superplasticity with an emphasis on magnesium alloys. Adv. Eng. Mater. 18 (2016) 127-131.
DOI: 10.1002/adem.201500068
Google Scholar
[2]
H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Mater. 47 (1999) 3753-3758.
DOI: 10.1016/s1359-6454(99)00253-0
Google Scholar
[3]
W.J. Kim, M.J. Kim, J.Y. Wang, Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Mater. Sci. Eng. A527 (2009) 322-327.
DOI: 10.1016/j.msea.2009.08.064
Google Scholar
[4]
J.A. del Valle, P. Rey, D. Gesto, D. Verdera, J.A. Jimenez, O.A. Ruano, Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater. Sci. Eng. A628 (2015) 198-206.
DOI: 10.1016/j.msea.2015.01.030
Google Scholar
[5]
Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater. Sci. Eng. A420 (2006) 240-244.
DOI: 10.1016/j.msea.2006.01.043
Google Scholar
[6]
M. Kai, Z. Horita, T.G. Langdon, Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A488 (2008) 117-124.
DOI: 10.1016/j.msea.2007.12.046
Google Scholar
[7]
W. -J. Kim, S.W. Chung, C.S. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater. 49 (2001) 3337-3345.
DOI: 10.1016/s1359-6454(01)00008-8
Google Scholar
[8]
H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg-Al-Zn alloys. Mater. Sci. Eng. A 407 (2005) 53-61.
DOI: 10.1016/j.msea.2005.06.059
Google Scholar
[9]
R.B. Figueiredo, T.G. Langdon, The characteristics of superplastic flow in a magnesium alloy processed by ECAP. Int. J. Mater. Res. 100 (2009) 843-846.
DOI: 10.3139/146.110102
Google Scholar
[10]
M. Kawasaki, S. Lee, T.G. Langdon, Constructing a deformation mechanism map for a superplastic Pb-Sn alloy processed by equal-channel angular pressing. Scr. Mater. 61 (2009) 963-966.
DOI: 10.1016/j.scriptamat.2009.08.001
Google Scholar
[11]
R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43 (2008) 7366-7371.
DOI: 10.1007/s10853-008-2846-0
Google Scholar
[12]
R.B. Figueiredo, T.G. Langdon, Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal-channel angular pressing. Metall. Mater. Trans. 45A (2014) 3197-3204.
DOI: 10.1007/s11661-013-1920-7
Google Scholar
[13]
T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42 (1994) 2437-2443.
DOI: 10.1016/0956-7151(94)90322-0
Google Scholar
[14]
H. Ishikawa, F.A. Mohamed, T.G. Langdon. The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid. Phil. Mag. 32 (1975) 1269-1271.
DOI: 10.1080/14786437508228105
Google Scholar
[15]
F.A. Mohamed, T.G. Langdon. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 22 (1974) 779-788.
DOI: 10.1016/0001-6160(74)90088-1
Google Scholar
[16]
S.S. Vagarali, T.G. Langdon. Deformation mechanisms in H.C.P. metals at elevated temperatures-I Creep behavior of magnesium. Acta Metall. 29 (1981) 1969-(1982).
DOI: 10.1016/0001-6160(81)90034-1
Google Scholar
[17]
R.L. Coble. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34 (1963) 1679-1682.
DOI: 10.1063/1.1702656
Google Scholar
[18]
D.H. Sastry, Y.V.R.K. Prasad, K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scr. Metall. 3 (1969) 927-930.
DOI: 10.1016/0036-9748(69)90243-9
Google Scholar
[19]
M. Kawasaki, T.G. Langdon. Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. J. Mater. Sci. 47 (2012) 7726-7734.
DOI: 10.1007/s10853-012-6487-y
Google Scholar
[20]
M. Kawasaki, T.G. Langdon. The many facets of deformation mechanism mapping and the application to nanostructured materials. J. Mater. Res. 28 (2013) 1827-1834.
DOI: 10.1557/jmr.2013.55
Google Scholar