Crystal Structure and Microstructure of Martensite in Ni-Mn-In Alloys and the Behavior of Variant Rearrangement under Uniaxial Loading

Article Preview

Abstract:

In the present work, the crystal structure and microstructure of martensite in Ni-Mn-In alloys and the variant rearrangement behavior under the external mechanical loading were investigated. Results show that the martensite has an incommensurate 6M modulated structure (I2/m (α0γ)00) with the modulation wave vector q = 0.3437c*. Microstructure of martensite is in plate shape and self-organized with four orientation variants that are alternately distributed and related in either type-I, or type-II or compound twin relation. The variant interfaces are in coincidence with their corresponding twinning plane and then should be considered coherent. Under the uniaxial compression, the loading located in the common positive Schmid factor zone of the three types of detwinning systems might be favorable to obtain the single variant state. This study is expected to offer a fundamental information of crystal structure, microstructures and variant rearrangement behaviors in Ni-Mn-In alloys, so as to understand the underlying mechanisms of their multifunctional magneto-responsive properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

518-523

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[2] J.L. Sánchez Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, L. Escoda, J.J. Suñol, R. Varga, Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons, Appl. Phys. Lett. 92 (2008) 012513.

DOI: 10.1063/1.2827179

Google Scholar

[3] V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan, S.B. Roy, Large magnetoresistance in Ni50Mn34In16 alloy, Appl. Phys. Lett. 89 (2006) 222509.

DOI: 10.1063/1.2399365

Google Scholar

[4] J. Liu, N. Scheerbaum, S. Kauffmann-Weiss, O. Gutfleisch, NiMn-based alloys and composites for magnetically controlled dampers and actuators, Adv. Eng. Mater. 14 (2012) 653-667.

DOI: 10.1002/adem.201200038

Google Scholar

[5] H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys-a new actuation mechanism with large work output, Adv. Funct. Mater. 19 (2009) 983-998.

DOI: 10.1002/adfm.200801322

Google Scholar

[6] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, (2003).

Google Scholar

[7] D. Chateigner, Combined Analysis, Wiley, (2013).

Google Scholar

[8] Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy, Acta Mater. 59 (2011) 3390-3397.

DOI: 10.1016/j.actamat.2011.02.014

Google Scholar

[9] H.L. Yan, Y.D. Zhang, N. Xu, A. Senyshyn, H. -G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys, Acta Mater. 88 (2015) 375-388.

DOI: 10.1016/j.actamat.2015.01.025

Google Scholar

[10] S. Van Smaalen, Incommensurate Crystallography, Oxford University Press, Oxford, (2007).

Google Scholar

[11] V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System JANA2006: General features, Z. Kristallogr. Cryst. Mater. 229 (2014) 345-352.

DOI: 10.1515/zkri-2014-1737

Google Scholar

[12] L. Righi, F. Albertini, L. Pareti, A. Paoluzi, G. Calestani, Commensurate and incommensurate 5M, modulated crystal structures in Ni-Mn-Ga martensitic phases, Acta Mater. 55 (2007) 5237-5245.

DOI: 10.1016/j.actamat.2007.05.040

Google Scholar

[13] Y. Zhang, Z. Li, C. Esling, J. Muller, X. Zhao, L. Zuo, A general method to determine twinning elements, J. Appl. Cryst. 43 (2010) 1426-1430.

DOI: 10.1107/s0021889810037180

Google Scholar

[14] Y. Zhang, C. Esling, X. Zhao, L. Zuo, Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals, J. Appl. Cryst. 40 (2007) 436-440.

DOI: 10.1107/s0021889807014331

Google Scholar