The Role of the Nd/Zn Ratio on the Stability of Mg-Zn-Nd Clusters and the Evolution of Texture in Two Mg-Zn-Nd Alloys during Annealing

Article Preview

Abstract:

Texture evolution in two magnesium alloys, Mg-4%Zn-1%Nd and Mg-1%Zn-1%Nd (weight percentage), was studied after rolling and the subsequent isothermal annealing. The finish rolling was completed in a single pass with a thickness reduction rate of ~30% at 100 °C and a rolling speed of 1000 m/min. After cooling to room temperature, the rolled samples were annealed at 350 °C for different annealing times. Upon annealing, the maximum intensity of the basal pole texture decreases as recrystallization progresses. In the Mg-1Zn-1Nd alloy (with a high Nd/Zn ratio), texture weakening is maintained even after complete recrystallization and grain coarsening, while in the Mg-4Zn-1Nd alloy, texture strengthening occurs after grain coarsening, and a single peak replaces the double split basal peaks. In the Mg-1Zn-1Nd alloy, grain coarsening is accompanied by a bimodal grain size distribution, whereas in the Mg-4Zn-1Nd alloy, the grain coarsening leads to a uniform grain size distribution. TEM investigations show the formation of the Zn and Nd rich clusters at early stage of annealing in both alloys. During recrystallization, these clusters were dissolved in the Mg-4Zn-1Nd alloy, but they are more stable in the Mg-1Zn-1Nd alloy. In our opinion, the formation of these stable clusters is one of the main factors for texture weakening of the Mg-Zn-RE alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

542-547

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.I. Basu, Acta Materialia, 67 (2014) 116-133.

Google Scholar

[2] J.P.J.P. Hadorn, Metallurgical and Materials Transactions A, 43 (2012) 1347-1362.

Google Scholar

[3] L. Jiang, J.J. Jonas, R. Mishra, Materials Science and Engineering A, 528 (2011) 6596-6605.

Google Scholar

[4] M. Sanjari, A. Farzadfar, A.S.H. Kabir, H. Utsunomiya, I.H. Jung, R. Petrov, L. Kestens, S. Yue, Journal of Materials Science, 49 (2014) 1408-1425.

DOI: 10.1007/s10853-013-7826-3

Google Scholar

[5] M. Sanjari, A. Farzadfar, T. Sakai, H. Utsunomiya, E. Essadiqi, I. -H. Jung, S. Yue, Journal of Materials Science, (2013) 1-17.

Google Scholar

[6] N. Stanford, Materials Science and Engineering: A, 565 (2013) 469-475.

Google Scholar

[7] K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scripta Materialia, 63 (2010) 725-730.

DOI: 10.1016/j.scriptamat.2009.12.033

Google Scholar

[8] I.H. Jung, M. Sanjari, J. Kim, S. Yue, Scripta Materialia, (2015).

Google Scholar

[9] T. Al-Samman, X. Li, Materials Science and Engineering A, 528 (2011) 3809-3822.

Google Scholar

[10] T. Al-Samman, X. Li, Materials Science and Engineering: A, 528 (2011) 3809-3822.

Google Scholar

[11] P. Dobroň, J. Balík, F. Chmelík, K. Illková, J. Bohlen, D. Letzig, P. Lukáč, Journal of Alloys and Compounds, 588 (2014) 628-632.

DOI: 10.1016/j.jallcom.2013.11.142

Google Scholar

[12] S.A. Farzadfar, E. Martin, M. Sanjari, E. Essadiqi, S. Yue, Journal of Materials Science, 47 (2012) 5488-5500.

Google Scholar

[13] S.A. Farzadfar, M. Sanjari, I.H. Jung, E. Essadiqi, S. Yue, Materials Science and Engineering: A, 528 (2011) 6742-6753.

DOI: 10.1016/j.msea.2011.05.064

Google Scholar

[14] L. Ma, R.K. Mishra, M.P. Balogh, L. Peng, A.A. Luo, A.K. Sachdev, W. Ding, Materials Science and Engineering: A, 543 (2012) 12-21.

Google Scholar

[15] T. Al-Samman, G. Gottstein, Materials Science and Engineering A, 490 (2008) 411-420.

Google Scholar

[16] S.E. Ion, F.J. Humphreys, S.H. White, Acta Metallurgica, 30 (1982) 1909-(1919).

Google Scholar

[17] J.C. Tan, M.J. Tan, Materials Science and Engineering A, 339 (2003) 124-132.

Google Scholar

[18] S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian, Scripta Materialia, 63 (2010) 985-988.

Google Scholar

[19] X. Huang, K. Suzuki, Y. Chino, Journal of Alloys and Compounds, 509 (2011) 4854-4860.

Google Scholar

[20] M. Sanjari, S.F. Farzadfar, T. Sakai, H. Utsunomiya, E. Essadiqi, I.H. Jung, S. Yue, Materials Science and Engineering A, 561 (2012) 191-202.

DOI: 10.1016/j.msea.2012.10.075

Google Scholar

[21] J. Jain, W.J. Poole, C.W. Sinclair, TMS 2006, Magnesium Technology 2006, 2006, pp.147-152.

Google Scholar

[22] A. Levinson, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater, 61 (2013) 5966–5978.

Google Scholar

[23] X. Li, P. Yang, L. -N. Wang, L. Meng, F. Cui, Mater Sci Eng A, 517 (2009) 160–169.

Google Scholar

[24] J. Wendt, K.U. Kainer, G. Arruebarrena, K. Hantzsche, J. Bohlen, D. Letzig, 2009, pp.289-293.

Google Scholar

[25] X. Huang, K. Suzuki, Y. Chino, Mater Sci Eng A, 560 (2013) 232–240.

Google Scholar

[26] X. -y. Yang, Y. -k. Zhu, H. Miura, T. Sakai, Transactions of Nonferrous Metals Society of China, 20 (2010) 1269-1274.

DOI: 10.1016/s1003-6326(09)60289-2

Google Scholar

[27] M. Sanjari, S.A. Farzadfar, I.H. Jung, E. Essadiqi, S. Yue, Materials Science and Technology, (2011).

Google Scholar

[28] J.P.J.P. Hadorn, Metallurgical and Materials Transactions A, 44 (2013) 1566-1576.

Google Scholar