[1]
T. Fülöp, W.A.M. Brekelmans, M.G.D. Geers, Size effects from grain statistics in ultra-thin metal sheets, J. Mater. Process. Technol. 174 (2006) 233–238.
DOI: 10.1016/j.jmatprotec.2006.01.006
Google Scholar
[2]
M.G.D. Geers, W.A.M. Brekelmans, P.J.M. Janssen, Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening, Int. J. Solids Struct. 43 (2006) 7304–7321.
DOI: 10.1016/j.ijsolstr.2006.05.009
Google Scholar
[3]
M.W. Fu, W.L. Chan, Micro-scaled Products Development via Microforming, Springer London, London, 2014. http: /link. springer. com/10. 1007/978-1-4471-6326-8 (accessed January 22, 2016).
Google Scholar
[4]
E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater. 46 (1998) 5611–5626.
DOI: 10.1016/s1359-6454(98)00231-6
Google Scholar
[5]
E. Hug, P.A. Dubos, C. Keller, Temperature dependence and size effects on strain hardening mechanisms in copper polycrystals, Mater. Sci. Eng. A. 574 (2013) 253–261.
DOI: 10.1016/j.msea.2013.03.025
Google Scholar
[6]
C. Keller, E. Hug, R. Retoux, X. Feaugas, TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section, Mech. Mater. 42 (2010) 44–54.
DOI: 10.1016/j.mechmat.2009.09.002
Google Scholar
[7]
T. Tabata, K. Takagi, H. Fujita, The Effect of Grain Size and Deformation Sub-Structure on Mechanical Properties of Polycrystalline Copper and Cu-Al Alloys, Trans Jpn Inst Met. 16 (1975) 569–580.
DOI: 10.2320/matertrans1960.16.569
Google Scholar
[8]
Y.T. Zhu, X.Y. Zhang, Q. Liu, Observation of twins in polycrystalline cobalt containing face-center-cubic and hexagonal-close-packed phases, Mater. Sci. Eng. A. 528 (2011) 8145–8149.
DOI: 10.1016/j.msea.2011.07.062
Google Scholar
[9]
H. -M. Thieringer, Zur Plastizität hexagonaler Kobalteinkristalle, Z Met. 59 (1968) 476.
DOI: 10.1515/ijmr-1968-590606
Google Scholar
[10]
C. Hitzenberger, H.P. Karnthaler, A. Korner, Electron microscopy of H.C.P. cobalt at various temperatures, Acta Metall. 33 (1985) 1293–1305.
DOI: 10.1016/0001-6160(85)90240-8
Google Scholar
[11]
A.G. Zhou, S. Basu, M.W. Barsoum, Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals, Acta Mater. 56 (2008) 60–67.
DOI: 10.1016/j.actamat.2007.08.050
Google Scholar
[12]
A. Seeger, H. Kronmüller, O. Boser, M. Rapp, Plastische Verfomung von Kobalteinkristallen, Phys Stat Sol. 3 (1963) 1107.
DOI: 10.1002/pssb.19630030617
Google Scholar
[13]
K.G. Davis, E. Teghtsoonian, Deformation twins in cobalt, Acta Metall. 10 (1962) 1189–1191.
DOI: 10.1016/0001-6160(62)90175-x
Google Scholar
[14]
J.T. X. Y. Zhang, High-resolution electron microscopy study of the {101¯1} twin boundary and twinning dislocation analysis in deformed polycrystalline cobalt, Scr. Mater. 67 (2012) 991–994.
DOI: 10.1016/j.scriptamat.2012.09.004
Google Scholar
[15]
X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Liu, et al., Twin boundaries showing very large deviations from the twinning plane, Scr. Mater. 67 (2012) 862–865.
DOI: 10.1016/j.scriptamat.2012.08.012
Google Scholar
[16]
A.W. Thompson, M.I. Baskes, W.F. Flanagan, The dependence of polycrystal work hardening on grain size, Acta Metall. 21 (1973) 1017–1028.
DOI: 10.1016/0001-6160(73)90158-2
Google Scholar
[17]
G. Fleurier, E. Hug, M. Martinez, P. -A. Dubos, C. Keller, Size effects and Hall–Petch relation in polycrystalline cobalt, Philos. Mag. Lett. 95 (2015) 122–130.
DOI: 10.1080/09500839.2015.1020351
Google Scholar
[18]
Sanderson, Deformation of polycrystalline cobalt, The University of British Columbia, (1972).
Google Scholar
[19]
C. Keller, E. Hug, Hall–Petch behaviour of Ni polycrystals with a few grains per thickness, Mater. Lett. 62 (2008) 1718–1720.
DOI: 10.1016/j.matlet.2007.09.069
Google Scholar
[20]
N. Stanford, U. Carlson, M.R. Barnett, Deformation Twinning and the Hall–Petch Relation in Commercial Purity Ti, Metall. Mater. Trans. A. 39 (2008) 934–944.
DOI: 10.1007/s11661-007-9442-9
Google Scholar
[21]
H. Mecking, Description of hardening curves of fcc single and polycrystals, in: Work Hardening Tens. Fatigue, TMS-AIME, A. W. Thompson, New York, 1977: p.67.
Google Scholar