High-Temperature Deformation Behavior of (Mo0.85Nb0.15)Si2 Crystals with C40/C11b Lamellar Microstructure

Article Preview

Abstract:

The effect of alloying element (such as Cr, Zr, and Ir) addition on the high-temperature creep deformation behavior of C40/C11b lamellar-structured (Mo0.85Nb0.15)Si2 silicide crystals was examined. The results indicated that these additions all lead to a decrease in the steady-state creep strain rate (SSCR) when the applied stress is parallel to the lamellar interface. To clarify the origin of this, the dependence of the creep deformation behavior on the microstructure was determined in detail. As a result, it was found that the C40 phase acts as a strengthening phase during the deformation of the C40/C11b duplex-phase crystals. The variant-1-type C11b phase grains, whose loading orientation is parallel to [001], also acts as an effective strengthening component. The decrease in SSCR by Cr or Zr addition is attributed to the increase in volume fraction of those C40 phase and C11b-V1 grains. The refinement of microstructure by Ir addition was also found to result in a modest decrease in the SSCR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

677-683

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Umakoshi, T. Sakagami, T. Hirano, T. Yamane, High temperature deformation of MoSi2 single crystals with the C11b structure, Acta Metall. Mater. 38 (1990) 909-915.

DOI: 10.1016/0956-7151(90)90163-b

Google Scholar

[2] A. K. Vasudevan, J. J. Petrovic, A comparative overview of molybdenum disilicide composites, Mater. Sci. Eng. A 155 (1992) 1-17.

Google Scholar

[3] T. Nakano, M. Azuma, Y. Umakoshi, Microstructure and high-temperature strength in MoSi2/NbSi2 duplex silicides, Intermetallics 6 (1998) 715-722.

DOI: 10.1016/s0966-9795(98)00054-5

Google Scholar

[4] K. Hagihara, T. Nakano, Y. Umakoshi, Mechanical properties of C40-based ternary Mo(Si, Al)2 and quaternary (Mo, Zr)(Si, Al)2 silicides, Scripta Mater. 38 (1998) 471-476.

DOI: 10.1016/s1359-6462(97)00432-6

Google Scholar

[5] F. G. Wei, Y. Kimura, Y. Mishima, Characterization of C11b/C40 lamellae in a MoSi2–15mol%TaSi2 alloy, Intermetallics 9 (2001) 661-670.

DOI: 10.1016/s0966-9795(01)00044-9

Google Scholar

[6] T. Nakano, Y. Nakai, S. Maeda, Y. Umakoshi, Microstructure of duplex-phase NbSi2(C40)/MoSi2(C11b) crystals containing a single set of lamellae, Acta Mater. 50 (2002) 1781-1795.

DOI: 10.1016/s1359-6454(02)00030-7

Google Scholar

[7] K. Hagihara, S. Maeda, T. Nakano, Y. Umakoshi, Indentation fracture behavior of (Mo0. 85Nb0. 15)Si2 crystals with C40 single-phase and MoSi2(C11b)/NbSi2(C40) duplex-phase with oriented lamellae, Sci. Tech. Adv. Mater. 5 (2004) 11-17.

DOI: 10.1016/s1359-6454(02)00030-7

Google Scholar

[8] T. Nakano, K. Hagihara, Y. Nakai, Y. Umakoshi, Plastic deformation behavior of NbSi2/MoSi2 crystals with oriented lamellae, Intermetallics 14 (2006) 1345-1350.

DOI: 10.1016/j.intermet.2005.10.017

Google Scholar

[9] Y. Kimura, M. Komiyama, Y. Mishima, Microstructure and mechanical properties of MoSi2/TaSi2 two-phase alloys, Intermetallics 14 (2006) 1358-1363.

DOI: 10.1016/j.intermet.2006.01.060

Google Scholar

[10] L. T. Zhang, O. Zhu, F. Zhang, A. D. Shan, J. S. Wu, High-temperature oxidation of Mo-rich (Mo1−xNbx)Si2 pseudo-binary compounds, Scripta Mater. 57 (2007) 305-308.

DOI: 10.1016/j.scriptamat.2007.04.039

Google Scholar

[11] K. Hagihara, T. Nakano, S. Hata, O. Zhu, Y. Umakoshi, Improvement of aligned lamellar structure by Cr-addition to NbSi2/MoSi2 duplex–silicide crystals, Scripta Mater. 62 (2010) 613-616.

DOI: 10.1016/j.scriptamat.2010.01.002

Google Scholar

[12] K. Hagihara, T. Nakano, Fracture behavior and toughness of NbSi2-based single crystals and MoSi2(C11b)/NbSi2(C40) duplex crystals with a single set of lamellae, Acta Mater. 59 (2011) 4168-4176.

DOI: 10.1016/j.actamat.2011.03.040

Google Scholar

[13] K. Hagihara, Y. Hama, K. Yuge, T. Nakano, Misfit strain affecting the lamellar microstructure in NbSi2/MoSi2 duplex crystals, Acta Mater. 61 (2013) 3432-3444.

DOI: 10.1016/j.actamat.2013.02.035

Google Scholar

[14] K. Yuge, K. Kishida, H. Inui, Y. Koizumi, K. Hagihara, T. Nakano, Cr segregation at C11b/C40 interface in MoSi2-based alloys: A first-principles study, Intermetallics 42 (2013) 165-169.

DOI: 10.1016/j.intermet.2013.06.009

Google Scholar

[15] Y. Koizumi, T. Yamasaki, K. Yuge, A. Chiba, K. Hagihara, T. Nakano, K. Kishida, H. Inui, Mechanisms of Cr segregation to C11b/C40 lamellar interface in (Mo, Nb)Si2 duplex silicide: A phase-field study to bridge experimental and first-principles investigations, Intermetallics 54 (2014).

DOI: 10.1016/j.intermet.2014.05.019

Google Scholar

[16] K. Hagihara, T. Fushiki, T. Nakano, Control of microstructure and fracture toughness improvement of NbSi2/MoSi2 duplex lamellar silicides by TaC particles dispersion, Scripta Mater. 82 (2014) 53-56.

DOI: 10.1016/j.scriptamat.2014.03.021

Google Scholar

[17] K. Hagihara, H. Araki, T. Ikenishi, T. Nakano, Creep-deformation behavior of (Mo0. 85Nb0. 15)Si2 lamellar-structured C40/C11b two-phase crystals, Acta Mater. 107 (2016) 196-212.

DOI: 10.1016/j.actamat.2016.01.040

Google Scholar

[18] T. Nakano, M. Kishimoto, D. Furuta, Y. Umakoshi, Effect of substitutational elements on plastic deformation behaviour of NbSi2-based silicide single crystals with C40 structure, Acta Mater. 48 (2000) 3465-3475.

DOI: 10.1016/s1359-6454(00)00135-x

Google Scholar

[19] T. Nakano, K. Hagihara, Y. Umakoshi, Effect of C11b-stabilized element on deformation mode in C40-type (Nb1-xMox)Si2 (x=0-0. 85) single crystals, MRS. Symp. Proc. 980 (2007) 297-302.

DOI: 10.1557/proc-980-0980-ii06-02

Google Scholar

[20] K. Ito, H. Inui, Y. Shirai, M. Yamaguchi, Plastic deformation of MoSi2 single crystals, Philos. Mag. A 72 (1995) 1075-1097.

DOI: 10.1080/01418619508239954

Google Scholar

[21] K. Ito, T. Yano, T. Nakamoto, M. Moriwaki, H. Inui, M. Yamaguchi, Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-based alloys, Prog. Mater. Sci. 42 (1997) 193-207.

DOI: 10.1016/s0079-6425(97)00015-7

Google Scholar

[22] D.P. Mason, D.C. Van Aken, On the creep of directionally solidified MoSi2-Mo5Si3 eutectics, Acta Metall. Mater. 43 (1995) 1201–1210.

DOI: 10.1016/0956-7151(94)00319-d

Google Scholar

[23] E. Bullock, M. Mclean, D.E. Miles, Creep behavior of a Ni-Ni3Al-Cr3C2 eutectic composite, Acta Metall. 25 (1977) 333-344.

DOI: 10.1016/0001-6160(77)90152-3

Google Scholar