[1]
Y. Umakoshi, T. Sakagami, T. Hirano, T. Yamane, High temperature deformation of MoSi2 single crystals with the C11b structure, Acta Metall. Mater. 38 (1990) 909-915.
DOI: 10.1016/0956-7151(90)90163-b
Google Scholar
[2]
A. K. Vasudevan, J. J. Petrovic, A comparative overview of molybdenum disilicide composites, Mater. Sci. Eng. A 155 (1992) 1-17.
Google Scholar
[3]
T. Nakano, M. Azuma, Y. Umakoshi, Microstructure and high-temperature strength in MoSi2/NbSi2 duplex silicides, Intermetallics 6 (1998) 715-722.
DOI: 10.1016/s0966-9795(98)00054-5
Google Scholar
[4]
K. Hagihara, T. Nakano, Y. Umakoshi, Mechanical properties of C40-based ternary Mo(Si, Al)2 and quaternary (Mo, Zr)(Si, Al)2 silicides, Scripta Mater. 38 (1998) 471-476.
DOI: 10.1016/s1359-6462(97)00432-6
Google Scholar
[5]
F. G. Wei, Y. Kimura, Y. Mishima, Characterization of C11b/C40 lamellae in a MoSi2–15mol%TaSi2 alloy, Intermetallics 9 (2001) 661-670.
DOI: 10.1016/s0966-9795(01)00044-9
Google Scholar
[6]
T. Nakano, Y. Nakai, S. Maeda, Y. Umakoshi, Microstructure of duplex-phase NbSi2(C40)/MoSi2(C11b) crystals containing a single set of lamellae, Acta Mater. 50 (2002) 1781-1795.
DOI: 10.1016/s1359-6454(02)00030-7
Google Scholar
[7]
K. Hagihara, S. Maeda, T. Nakano, Y. Umakoshi, Indentation fracture behavior of (Mo0. 85Nb0. 15)Si2 crystals with C40 single-phase and MoSi2(C11b)/NbSi2(C40) duplex-phase with oriented lamellae, Sci. Tech. Adv. Mater. 5 (2004) 11-17.
DOI: 10.1016/s1359-6454(02)00030-7
Google Scholar
[8]
T. Nakano, K. Hagihara, Y. Nakai, Y. Umakoshi, Plastic deformation behavior of NbSi2/MoSi2 crystals with oriented lamellae, Intermetallics 14 (2006) 1345-1350.
DOI: 10.1016/j.intermet.2005.10.017
Google Scholar
[9]
Y. Kimura, M. Komiyama, Y. Mishima, Microstructure and mechanical properties of MoSi2/TaSi2 two-phase alloys, Intermetallics 14 (2006) 1358-1363.
DOI: 10.1016/j.intermet.2006.01.060
Google Scholar
[10]
L. T. Zhang, O. Zhu, F. Zhang, A. D. Shan, J. S. Wu, High-temperature oxidation of Mo-rich (Mo1−xNbx)Si2 pseudo-binary compounds, Scripta Mater. 57 (2007) 305-308.
DOI: 10.1016/j.scriptamat.2007.04.039
Google Scholar
[11]
K. Hagihara, T. Nakano, S. Hata, O. Zhu, Y. Umakoshi, Improvement of aligned lamellar structure by Cr-addition to NbSi2/MoSi2 duplex–silicide crystals, Scripta Mater. 62 (2010) 613-616.
DOI: 10.1016/j.scriptamat.2010.01.002
Google Scholar
[12]
K. Hagihara, T. Nakano, Fracture behavior and toughness of NbSi2-based single crystals and MoSi2(C11b)/NbSi2(C40) duplex crystals with a single set of lamellae, Acta Mater. 59 (2011) 4168-4176.
DOI: 10.1016/j.actamat.2011.03.040
Google Scholar
[13]
K. Hagihara, Y. Hama, K. Yuge, T. Nakano, Misfit strain affecting the lamellar microstructure in NbSi2/MoSi2 duplex crystals, Acta Mater. 61 (2013) 3432-3444.
DOI: 10.1016/j.actamat.2013.02.035
Google Scholar
[14]
K. Yuge, K. Kishida, H. Inui, Y. Koizumi, K. Hagihara, T. Nakano, Cr segregation at C11b/C40 interface in MoSi2-based alloys: A first-principles study, Intermetallics 42 (2013) 165-169.
DOI: 10.1016/j.intermet.2013.06.009
Google Scholar
[15]
Y. Koizumi, T. Yamasaki, K. Yuge, A. Chiba, K. Hagihara, T. Nakano, K. Kishida, H. Inui, Mechanisms of Cr segregation to C11b/C40 lamellar interface in (Mo, Nb)Si2 duplex silicide: A phase-field study to bridge experimental and first-principles investigations, Intermetallics 54 (2014).
DOI: 10.1016/j.intermet.2014.05.019
Google Scholar
[16]
K. Hagihara, T. Fushiki, T. Nakano, Control of microstructure and fracture toughness improvement of NbSi2/MoSi2 duplex lamellar silicides by TaC particles dispersion, Scripta Mater. 82 (2014) 53-56.
DOI: 10.1016/j.scriptamat.2014.03.021
Google Scholar
[17]
K. Hagihara, H. Araki, T. Ikenishi, T. Nakano, Creep-deformation behavior of (Mo0. 85Nb0. 15)Si2 lamellar-structured C40/C11b two-phase crystals, Acta Mater. 107 (2016) 196-212.
DOI: 10.1016/j.actamat.2016.01.040
Google Scholar
[18]
T. Nakano, M. Kishimoto, D. Furuta, Y. Umakoshi, Effect of substitutational elements on plastic deformation behaviour of NbSi2-based silicide single crystals with C40 structure, Acta Mater. 48 (2000) 3465-3475.
DOI: 10.1016/s1359-6454(00)00135-x
Google Scholar
[19]
T. Nakano, K. Hagihara, Y. Umakoshi, Effect of C11b-stabilized element on deformation mode in C40-type (Nb1-xMox)Si2 (x=0-0. 85) single crystals, MRS. Symp. Proc. 980 (2007) 297-302.
DOI: 10.1557/proc-980-0980-ii06-02
Google Scholar
[20]
K. Ito, H. Inui, Y. Shirai, M. Yamaguchi, Plastic deformation of MoSi2 single crystals, Philos. Mag. A 72 (1995) 1075-1097.
DOI: 10.1080/01418619508239954
Google Scholar
[21]
K. Ito, T. Yano, T. Nakamoto, M. Moriwaki, H. Inui, M. Yamaguchi, Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-based alloys, Prog. Mater. Sci. 42 (1997) 193-207.
DOI: 10.1016/s0079-6425(97)00015-7
Google Scholar
[22]
D.P. Mason, D.C. Van Aken, On the creep of directionally solidified MoSi2-Mo5Si3 eutectics, Acta Metall. Mater. 43 (1995) 1201–1210.
DOI: 10.1016/0956-7151(94)00319-d
Google Scholar
[23]
E. Bullock, M. Mclean, D.E. Miles, Creep behavior of a Ni-Ni3Al-Cr3C2 eutectic composite, Acta Metall. 25 (1977) 333-344.
DOI: 10.1016/0001-6160(77)90152-3
Google Scholar