Morphological Characterization of Nickel-Silica Nanocomposite in Residual Carbon Obtained by Direct Polymeric Route

Article Preview

Abstract:

Nickel-silica nanocomposites can be obtained by direct chemical route, such as the Polymeric Precursor Method. That methodology type permits to obtain material powders with significant specific area and porosity suitable for reactive gases or fluids permeation, which are required characteristics for application in heterogeneous catalysis process. The composite material obtained from pyrolysis of polymeric precursor has its porosity strongly dependent from precursor constitution, which affects the decomposition kinetic. In this study, it was obtained a polyester precursor based on triethylene glycol, which has been submitted at pyrolysis at 600 oC for several times in nitrogen atmosphere. The nickel-silica nanocomposite obtained through that methodology presents a residual amorphous carbon phase playing an important rule on the mechanism of pore formation. Nickel nanoparticles nucleate with sizes close to 10 nm in diameter and are highly dispersed in a hybrid amorphous carbon-silica matrix. The composite pore volume, calculated through the JBH method, presents a continuous increasing as a function of pyrolysis time, reaching more than 0.15 cc/g after 7 hours from initial decomposition process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

441-446

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.R. Leite, N.L.V. Carreño, E. Longo, A. Valentini, L.F.D. Probst: J. Nanosci. Nanotechnol. Vol. 2 (1) (2002), p.89.

Google Scholar

[2] S. Cao, A. Chen, Y. Zhao, Y. Lu: Nanoscale vol. 7 (2015), p.5612.

Google Scholar

[3] A.F. Gross, E.J. Ruiz, S.H. Tolbert: J. Phys. Chem. B 104 Vol. (2000), p.5448.

Google Scholar

[4] B. Boury, F. Ben, R.J.P. Corriu, P. Delord, M. Nobili: Chem. Matter. Vol. 14 (2) (2002), p.730.

Google Scholar

[5] K.T. Faber: Annu. Rev. Mater. Res. Vol. 27 (1997), p.499.

Google Scholar

[6] Z. Ulker, I. Erucar, S. Keskin, C. Erkey: Micropor. Mesopor. Mat. Vol. 170 (2013), p.352.

Google Scholar

[7] F.C., Fonseca, G.F. Goya, R.F. Jardim, N.L.V. Carreño, E. Longo, E.R. Leite, R. Muccillo: Appl. Phys. A-Mater. Science & Processing. Vol. 76 (4) (2003), p.621.

Google Scholar

[9] M.L. Anderson, R.M. Stroud, D.R. Rolison: Nano Lett. Vol. 2 (3) (2002), p.235.

Google Scholar

[8] M.P. Pechini, U.S. Patent 3. 330. 697. (1967).

Google Scholar

[9] G. Pourroy, S. Läkamp, S. Vilminot: J. Alloys Comp. Vol. 244 (1996), p.90.

Google Scholar

[10] A.R. Malagutti, H.A.J.L. Mourão, J.R. Garbin, C. Ribeiro: Appl. Catal. B Environ. Vol. 90 (2009), p.205.

Google Scholar

[11] G.F. Goya, F.C. Fonseca, R.F. Jardim, R. Muccillo, N.L.V. Carreno, E. Longo, E.R. Leite, Magnetic dynamics of single-domain Ni nanoparticles, J. Appl. Phys., 93, 10 (2003) 6531-6533.

DOI: 10.1063/1.1540032

Google Scholar

[12] A.A. Cavalheiro, E.R. Leite, J.A. Varela: Matéria Vol. 10 (2) (2005), p.307.

Google Scholar

[13] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang: Science Vol. 274 (1996), p.1701.

Google Scholar

[14] P. Xiao, Y. Zhao, T. Wang, Y. Zhan, H. Wang, J. Li, A. Thomas, J. Zhu: Chem. Eur. J. Vol. 20 (10) (2014), p.2872.

Google Scholar

[15] A.A. Cavalheiro, J.C. Bruno, E.R. Leite, J.A. Varela: Mater. Chem. Phys. Vol. 106 (2007), p.286.

Google Scholar

[16] J. Landers, G.Y. Gor, A.V. Neimark: Colloids and Surfaces A Physicochem. Eng. Aspects Vol. 437 (2013), p.3.

Google Scholar

[17] H.G. Elias, G. Bayer, M. Miiller-Vonmoos, H. G. Wiedemann, Thermal Analysis, Volume 3: Organic and Macromolecular Chemistry, Ceramics, Earth Science, H.G. Wiedemann editors, Zurich, (1972).

DOI: 10.1007/978-3-0348-5775-8

Google Scholar

[18] H. Marsh, B. Rand: J. Colloid. Interface. Sci. Vol. 33 (1970), p.478.

Google Scholar