Viability of Sugarcane Bagasse Ash as Precursor Material to Solar Absorbers Films

Article Preview

Abstract:

The availability of fossil resources decreases over the years, constituting a problem that needs to be properly treated. In this context, it is necessary the exploration of alternative and renewable sources of energy, particularly the use of solar energy incident on the planet. The aim of this work is to examine the feasibility of the application of sugarcane bagasse ash as a precursor material for obtaining an inorganic polymer that will form the absorber film for use in solar collectors for medium and high temperature. Through mechanical particle size separation of ash and its physicochemical characterization, it was possible to prove that the chemical and mineralogical composition of the raw material is favorable for use in alkaline synthesis Furthermore, the ash particle size large achieved the best results of properties optical and microstructural, favoring its application to obtain films to be applied to selective surface. It was also observed that the metallic copper substrate had the best interaction with the film providing the best results in absorption of ultraviolet visible region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-432

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F.M. Martirena Hernández, B. Middeendorf, M. Gehrke, H. Budelmann: Cement and Concrete Research Vol. 28 (11) (1998), p.1525.

Google Scholar

[2] N. Selvakumar, H.C. Barshilia: Solar Energy Materials & Solar Cells Vol. 98 (2012), p.1.

Google Scholar

[3] J. Payá, J. Monzó, M.V. Borrachero, L. Díaz-Pinzón, L.M. Ordóñez: Journal of Chemical Technology and Biotechnology Vol. 77 (1) (2002), p.321.

Google Scholar

[4] N.B. Singh, V.D. Singh, S. Rai: Cement and Concrete Research Vol. 30 (9) (2000), p.1485.

Google Scholar

[5] E.F.A. Carvalho, M.J.F. Calvete: Revista Virtual de Química Vol. 2 (2010), p.192.

Google Scholar

[6] I.M.T. Bezerra, D.L. Costa, J.P.M. Vitorino, R.R. Menezes, G. Neves: Revista Eletrônica de Materiais e Processos vVol. 8 (2013), p.101.

Google Scholar

[7] C.G.S. Severo, D.L. Costa, I.M.T. Bezerra, R.R. Menezes, G. Neves: Revista Eletrônica de Materiais e Processos, v. 8, pp.55-67, (2013).

Google Scholar

[8] ÚNICA - União da Indústria da Cana de Açúcar, (2010).

Google Scholar

[9] P.F. Filho, S.M. Torres, N.P. Barbosa, V.M.A. Magalhães, A.A.P. Vieira: Key Engineering Materials Vol. 600 (2014), p.597.

Google Scholar

[10] C.N. Hamelink et al.: Biomass and Bionergy Vol. 28 (2005).

Google Scholar

[11] A. Pandey et al.: Bioresource Technology Vol. 74 (2000), p.69.

Google Scholar

[12] K.C. Gomes, S.M. Torres, Z.E. Silva, N.P. Barbosa, M.R.F. Lima Filho: Key Engineering Materials (Online) Vol. 600 (2014), p.329.

Google Scholar

[13] K.C. Gomes, G.S.T. Lima, S.M. Torres, S. Barros, I.F. Vasconcelos, N.P. Barbosa: Materials Science Forum Vol. 643 (2010), p.131.

Google Scholar

[14] A. Palomo, M.T.B. Varela, M.T. Granizo, F. Puertas, T. Varquez, M.W. Grutzeck: Cement and Concrete Research Vol. 29 (1999b), p.997.

DOI: 10.1016/s0008-8846(99)00074-5

Google Scholar

[15] P. Worathanakul et al.: Characterization for post-treatment effect of bagasse ash for silica extraction (2009).

Google Scholar

[16] P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer: Journal Material Science Vol. 42 (2007), p.2917.

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[17] C.A.S. Gomes, M.E.V. Silva, K.J. Schwarzer: Comparative Study of Selective Surfaces for Solar Collectors. In: ENCIT, 2002, CAXAMBU. ENCIT 2002. vol. 1 (2002), p.1.

Google Scholar