WO3:TiO2 Particle Characterization Obtained by High Energy Milling for Application in Photocatalysis

Article Preview

Abstract:

Effective ways to treat textile industrial effluents have been studied in attempt to find alternatives to reduce the imminent risk of water resources contamination. The heterogeneous photocatalysis stands out in this scenario working in the organic waste mineralization, such as dyes. The objectives of this study were to investigate the obtaining of fine powders of the WO3:TiO2 (the investigated proportions in this work were 0: 100; 30:70; 50:50; 70:30; 100:0) using the high energy milling technique and to evaluate the photocatalytic efficiency of the Rhodamine B dye in this system. The oxides precursors were characterized by X-ray diffraction, BET and Helium pycnometry. After dry milling for 4 hours, the obtained powders were characterized by X-ray diffraction and tested to the photocatalysis in UV-C. The results indicate that the milling process has a direct influence on the photocatalytic properties of the investigated systems, and that the greater presence of titania in the mixture leads to a greater catalytic effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-409

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U.G. Akpan, B.H. Hameed: Journal of Hazardous Materials. Nibong Tebal, Penang, Malaysia (2009), p.520.

Google Scholar

[2] S.A.S. Melo, et al.: Degradação de fármacos residuais por processos oxidativos avançados. Disponível em: <http: /www. scielo. br/scielo. php?script=sci_arttext&pid=S0100-0422009000100034>. access: 09 july. (2014).

DOI: 10.1590/s0100-40422009000100034

Google Scholar

[3] C.A. Casagrande: Estudo da incorporação de partículas de titânia em argamassas fotocatalíticas. Mestrado (Dissertação). Florianópolis, 2012. Universidade Federal de Santa Catarina (UFSC). (SC).

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[4] C. Suryanarayana: Mechanical alloying and milling. (Elsevier Science Ltd., Colorado, 2001).

Google Scholar

[5] N.A.R. Delgado, et al.: Journal of Hazardous Materials. Vol. l. Mexico (2012), p.36.

Google Scholar

[6] J.A. Oliveira: Obtenção de partículas de WO3: TiO2 aplicadas a processos oxidativos avançados para despoluição de águas. TCC (Graduação) - Course of Chemical Engineering, Universidade Federal de Alfenas, Poços de Caldas, (2014).

DOI: 10.47749/t/unicamp.2011.795253

Google Scholar

[7] S. Amirkhanlou, M. Ketabchi, N. Parvin: Materials Letters Vol. 86 (2012), p.122.

Google Scholar

[8] S. Amirkhanlou, M. Ketabchi, N. Parvin: Materials Letters Vol. 86 (2012), p.122.

Google Scholar

[9] B. Subash et al. Highly active WO3–Ag–ZnO photocatalyst driven by day light illumination. Elsevier (2012), p.155.

DOI: 10.1016/j.spmi.2012.11.009

Google Scholar

[10] F.F. Brites, N.R.C. Machado, V.S. Santana: Springer Science Business Media Vol. 54 (2011), p.264.

Google Scholar

[11] I.A. Castro et al.: Síntese de nanoheteroestruturas TiO2/WO3 e avaliação do seu potencial fotocatalítico sob radiação UV e visível. In: proceedings of the workshop vi nanotechnology network applied to agribusiness, 14073., 2012, Fortaleza-ceará. São Carlos-sp: Embrapa, 2012. pp.402-406.

DOI: 10.11606/d.59.2020.tde-11112019-195124

Google Scholar