Photodegradation of Phenol Red in a Compound of Type ZnO@Cr Core/Shell

Article Preview

Abstract:

urface properties core/shell nanoparticles have been investigated in recent years due to their promising reactivity in catalysis surface. In this work, the ZnO@Cr core/ shell nanoparticles were synthesized by Modified Pechini method and characterized by X-ray diffraction and scanning electron microscopy (SEM). The structural parameters were evaluated as a function of chromium coatings on the ZnO structure, using the Rietveld method. From the refinement of experimental diffractogram determined the crystallographic structure of the investigated system as being of the hexagonal type with space group P63mc. The coating of ZnO with chrome led to an increase of the structural parameters. Photocatalytic activity of ZnO@Cr nanoparticles was studied using a low power reactor and the phenol red dye in acid and basic medium. The nanoparticles showed level of degradation in acid medium 1.24 times higher than that in basic medium. The photodegradation follows a first order kinetics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

410-415

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F.P. Nogueira, W.F. Jardim: Quím. Nova Vol. 21 (1996), p.69.

Google Scholar

[2] J. Su. et al.: Nanoscale Vol. 6 (2014), p.5181.

Google Scholar

[3] N. Assi, M.A.A. Sharif, Q.S.M. Naeini: Int. J. Nano Dimens. Vol. 5 (2014), p.145.

Google Scholar

[4] C. Fenghua et al.: Dalton Trans. Vol. 43 (2014), p.13537.

Google Scholar

[5] E. Tauchert, P. Peralta-Zamora: Eng. Sanit. Ambient. Vol. 9 (2004), p.197.

Google Scholar

[6] C. Wang et al.: J. Power Sources Vol. 269, p. (2014), p.24.

Google Scholar

[7] M. Pechini: U. S. Patente n° 3330697, (1997).

Google Scholar

[8] M.A.L. Nobre, E.R. Leite, E. Longo, J.A. Varela: Mater. Lett. Vol. 28 (1996), p.215.

Google Scholar

[9] H. Wang, M. Yu, C. K. Lin, J. Lin: J. Colloid Interface Sci. Vol. 300 (2006), p.176.

Google Scholar

[10] R.A. Young, D.B. Willes: J. Appl. Cryst. Vol. 15 (1982), p.430.

Google Scholar

[11] J. R. Carvajal. An introduction to the program FullProff 2000 (version July 2001), Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, 91191 Gif sur Yvette Cedex, France.

DOI: 10.3934/dcdsb.2013.18.1

Google Scholar

[12] Diamond Version 3. 2. Copyright © 1997-2010 Crystal Impact GbR, Bonn, Germany. All rights reserved. Plataforma Windows.

Google Scholar

[13] S. Lanfredi, D.H. M. Gênova, I.A.O. Brito, A.R.F. Lima and M.A.L. Nobre: J. Solid State Chem. Vol. 184 (2011), p.990.

Google Scholar

[14] T. Steiner: Semiconductor Nanostructures for Optoelectronic Applications. (Artech House, Boston, 2004).

Google Scholar

[15] I. Esparza et al.: Mater. Sci. Appl. Vol. 2 (2011), p.1584.

Google Scholar

[16] P.C. Ribeiro, H.L. Lira, J.M. Sasaki, A. C F. M. Costa: Revista Matéria Vol. 17 (2012), p.988.

Google Scholar

[17] L.H. Curz, F.G. Henning, A.B. Santos, P.P. Zamora: Quim. Nova Vol. 33 (2010), p.1270.

Google Scholar

[18] J.M. Herman: Catal. Today Vol. 53 (1999), p.115.

Google Scholar

[19] S. Lanfredi, M.A.L. Nobre, P.G.P. Moraes, J. Matos: Ceram. Int. Vol. 40 (2014), p.525.

Google Scholar