Effect of Nickel Doping on Dielectric, Piezoelectric Properties and Domain Configurations of PZT Based Ceramics

Article Preview

Abstract:

The aims of present study were investigated the effect of nickel doping on the dielectric and piezoelectric properties of P(BN)ZT solid solution. P(BN)ZT powder doped with nickel nanoparticle in the composition of (1-x) PBNZT–xNi when x = 0, 2, 4, 6, 8 and 10 percent by mole. P(BN)ZT doped with nickel powder were calcined at 900 °C for 2 h and sintered at the temperature range of 1150 -1250°C for 2 h with heating/cooling rate of 5 °C/min. The dielectric constant (er) and the dielectric loss tangent (tand) of all ceramics were measured at room temperature using LCR meter. The piezoelectric properties (d33) were measured at room temperature using d33 meter. The micro and nano-domain structure was clearly observed by piezo-response force microscopy (PFM). From the results, it can be seen that the dielectric and piezoelectric decreased with increasing Ni particle of all composition (0.0-0.1 mol%). Moreover, PFM images show that the micro (180°) and nano (90°) domain are orientated at the surface region in submicron-scale of P(BN)ZT ceramics with doped nickel nanoparticle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Jaffe, W.R. Cook and H. Jaffe, Piezoelectric Ceramics, Academic Press, London New York, (1971).

Google Scholar

[2] Y. Xu, Ferroelectric Materials and Their Applications, Elsevier Science Publishers B.V., Amsterdam. (1991).

Google Scholar

[3] H.J. Hwang, M. Yasuoka, M. Sando, M. Toriyama: J. Am. Ceram Soc Vol. 82 (1999), p.2417.

Google Scholar

[4] K. Tajima, H.J. Hwang, M. Sando: J. Am. Ceram. Soc Vol 83 (2000), p.651.

Google Scholar

[5] P.H. Xiang, X.L. Dong, C.D. Feng, N. Zhong, J.K. Guo: Ceram. Inter Vol. 30 (2004), p.765.

Google Scholar

[6] P.H. Xiang, X.L. Dong, C.D. Feng, H. Chen and Y.L. Wang, Mat. Res. Bull Vol. 38 (2003).

Google Scholar

[7] H. Emoto and J. Hojo, J. Ceram. Soc. Jap Vol. 100 (1992), p.1555.

Google Scholar

[8] A. Gruverman and H. Tokumoto: Nano. Lett Vol. 1 (2001), p.93.

Google Scholar

[9] S. Kalinin, and D. Bonnell: Phys. Rev. B Vol. 64 (2002), p.125408.

Google Scholar

[10] G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotskii: Appl. Phys. Lett Vol. 82 (2003), p.103.

DOI: 10.1103/physrevlett.90.107601

Google Scholar

[11] C. Miclea, C. Tanasoiu, C.F. Miclea, L. Amarande, A. Gheorghiu, F.N. Sima: J. Eur. Ceram. Soc Vol. 25 (2005), p.2397.

DOI: 10.1016/j.jeurceramsoc.2005.03.069

Google Scholar

[12] A. Gruverman, O. Auciello and H. Tokumoto: Annu. Rev. Mater. Sci Vol. 28 (1998), p.101.

Google Scholar

[13] R. Yimnirun, S. Ananta and P. Laoratanakul: Mat. Sci. Eng. B Vol. 112 (2009), p.79.

Google Scholar

[14] Y. Zhang, Z. Yang, H. Ma and J. Du, Jour of Phys: Conference Series Vol. 152 (2009), P. 012063.

Google Scholar

[15] H.R. Zeng, H.F. Yu, X.G. Tang, R.Q. Chu, G.R. Li, Q.R. Yin : Mat. Sci. Eng. B Vol. 120 (2005), p.521.

Google Scholar

[16] H.R. Zeng, H.F. Yu, S.X. Hui, G.R. Li, H.S. Luo, Q. R Yin: Mats. Sci. Eng. B Vol. 127 (2006), p.58.

Google Scholar