The Influence of Plastic Deformation on Lattice Defect Structure and Mechanical Properties of 316L Austenitic Stainless Steel

Article Preview

Abstract:

The effect of different plastic deformation methods on the phase composition, lattice defect structure and hardness in 316L stainless steel was studied. The initial coarse-grained γ-austenite was deformed by cold rolling (CR) or high-pressure torsion (HPT). It was found that the two methods yielded very different phase compositions and microstructures. Martensitic phase transformation was not observed during CR with a thickness reduction of 20%. In γ-austenite phase in addition to the high dislocation density (~10 × 1014 m-2) a significant amount of twin-faults was detected due to the low stacking fault energy. On the other hand, γ-austenite was gradually transformed into ε and α’-martensites with transformation sequences γ→ε→α’ during HPT deformation. A large dislocation density (~133 × 1014 m-2) was detected in the main phase (α’-martensite) at the periphery of the disk after 10 turns of HPT. The high defect density is accompanied by a very small grain size of ~45 nm in the HPT-processed sample, resulting in an very large hardness of 6130 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.G. Kim, S.N. Yin, W.S. Ryu, C.B. Lee, Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel, Korean Inst. Met. Mater. 46 (2008) 118-124.

DOI: 10.4028/www.scientific.net/kem.326-328.1313

Google Scholar

[2] Y. Kim, Y. Kim, D. Kim, S. Kim, W. Nam, H. Choe, Effects of Hydrogen Diffusion on the Mechanical Properties of Austenite 316L Steel at Ambient Temperature, Mater. Trans. 52 (2011) 507-513.

DOI: 10.2320/matertrans.m2010273

Google Scholar

[3] I. Gotman, Characteristics of Metals Used in Implants, Endourology 11 (1997) 383-389.

DOI: 10.1089/end.1997.11.383

Google Scholar

[4] G.L. Lucas, F.W. Cooke, E.A. Friis, A Primer of Biomechanics, A primer of biomechanics, Springer Science + Business Media, New York, NY, (1999).

Google Scholar

[5] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing Bulk Ultrafi ne-Grained Materials by Severe Plastic Deformation, JOM 58(4) (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[6] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[7] S.S.M. Tavaresa, D. Fruchart, S. Miraglia, A magnetic study of the reversion of martensite α' in a 304 stainless steel, J. Alloys Compd. 307 (2000) 311-317.

DOI: 10.1016/s0925-8388(00)00874-4

Google Scholar

[8] K. Spencer, M. Véron, K. Yu-Zhang, J.D. Embury, The strain induced martensite transformation in austenitic stainless steels, Part 1- Influence of temperature and strain history, Mater. Sci. Techn. 25 (2009) 7-17.

DOI: 10.1179/174328408x293603

Google Scholar

[9] S. Scheriau, Z. Zhang, S. Kleber, R. Pippan, Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion, Mater. Sci. Eng. A 528 (2011) 2776-2786.

DOI: 10.1016/j.msea.2010.12.023

Google Scholar

[10] H.F.G. Abreu, S.S. Carvalho, P.L. Neto, R.P. Santos, V.N. Freire, P.M.O. Silva, S.S.M. Tavares, Deformation Induced Martensite in an AISI 301LN Stainless Steel: Characterization and Influence on Pitting Corrosion Resistance, Mater. Res. 10 (2007).

DOI: 10.1590/s1516-14392007000400007

Google Scholar

[11] Y. Mine, Z. Horita, Y. Murakami, Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion, Acta Mater. 57 (2009) 2993-3002.

DOI: 10.1016/j.actamat.2009.03.006

Google Scholar

[12] K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, Y. Bréchet, Strengthening via the formation of strain-induced martensite in stainless steels, Mater. Sci. Eng. A 387-389 (2004) 873-881.

DOI: 10.1016/j.msea.2003.11.084

Google Scholar

[13] C. Garion, B. Skoczeń, S. Sgobba, Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures, Int. J. Plast. 22 (2006) 1234-1264.

DOI: 10.1016/j.ijplas.2005.08.002

Google Scholar

[14] J.A. Venables, The martensite transformation in stainless steel, Phil. Mag. 7 (1962) 35-44.

Google Scholar

[15] P.L. Mangonon, G. Thomas, The Martensite Phases in 304 Stainless Steel, Metall. Trans 1 (1970) 1577-1586.

DOI: 10.1007/bf02642003

Google Scholar

[16] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 8198-8204.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[17] J.L. Lábár, Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part III: Application Examples, Microsc. Microanal. 18 (2012) 406-420.

DOI: 10.1017/s1431927611012803

Google Scholar

[18] G. Ribárik, J. Gubicza, T. Ungár, Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction, Mater. Sci. Eng. A 387-389 (2004) 343-347.

DOI: 10.1016/j.msea.2004.01.089

Google Scholar

[19] J. Gubicza, M. El-Tahawy, Y. Huang, H. Choi, H. Choe, J.L. Lábár, T.G. Langdon, Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion, Mater. Sci. Eng. A 657 (2016) 215-223.

DOI: 10.1016/j.msea.2016.01.057

Google Scholar

[20] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[21] S. Martin, C. Ullrich, D. Šimek, U. Martin, D. Rafaja, Stacking fault model of ε-martensite and its DIFFaX implementation, J. Appl. Cryst. 44 (2011) 779-787.

DOI: 10.1107/s0021889811019558

Google Scholar

[22] R.L. Clendenen, H.G. Drickamer, The effect of pressure on the volume and lattice parameters of Ruthnium and Iron, Phys. Chem. Solids 25 (1964) 865-868.

DOI: 10.1016/0022-3697(64)90098-8

Google Scholar