[1]
F. H. Gojny, M. H. G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Technol. 65 (2005), 2300–2313.
DOI: 10.1016/j.compscitech.2005.04.021
Google Scholar
[2]
S. Ganguli, M. Bhuyan, L. Allie, H. Aglan, Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy, J. Mater. Sci. 40 (2005), 3593 – 3595.
DOI: 10.1007/s10853-005-2891-x
Google Scholar
[3]
A. T. Seyhan, F. H. Gojny, M. Tanoglu, K. Schulte, Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites, Eur. Polym. J. 43 (2007), 374–379.
DOI: 10.1016/j.eurpolymj.2006.11.018
Google Scholar
[4]
J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, Q. Zhang, Int. J. Heat Mass 92 (2016), 15-22.
Google Scholar
[5]
N. Ramdani, M. Derradji, . Feng, Z. Tong, J. Wang, E. Mokhnache, W. Liu, Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites, Mater. Lett. 155 (2015), 34-37.
DOI: 10.1016/j.matlet.2015.04.097
Google Scholar
[6]
S. D. A. S. Ramoa, G. M. O. Barra, C. Merlini, S. Livi, B. G. Soares, A. Pegoretti, Novel electrically conductive polyurethane/montmorillonite-polypyrrole nanocomposites, Express Polym. Lett. 9 (2015), 945-958.
DOI: 10.3144/expresspolymlett.2015.85
Google Scholar
[7]
X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Part A-Appl. S. 82 (2016).
DOI: 10.1016/j.compositesa.2015.12.006
Google Scholar
[8]
K.A. Alnefaie, S.M. Aldousari, U.A. Khashaba, New development of self-damping MWCNT composites, Compos. Part A-Appl. S. 52 (2013), 1-11.
DOI: 10.1016/j.compositesa.2013.04.011
Google Scholar
[9]
R.K. Patel, B. Bhattacharya, S. Basu, Effect of interphase properties on the damping response of polymer nano-composites, Mech. Res. Commun. 35 (2008), 115-125.
DOI: 10.1016/j.mechrescom.2007.08.005
Google Scholar
[10]
H. Liu, P. Bandyopadhyay, N. H. Kim, B. Moon, J. H. Lee, Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film, Polym. Test. 50 (2016), 49-56.
DOI: 10.1016/j.polymertesting.2015.12.007
Google Scholar
[11]
W. Chen, H. Lu, S. R. Nutt, The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites, Compos. Sci. Technol. 68 (2008), 2535-2542.
DOI: 10.1016/j.compscitech.2008.05.011
Google Scholar
[12]
Y. S. Song, J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43 (2005), 1378–1385.
DOI: 10.1016/j.carbon.2005.01.007
Google Scholar
[13]
M. Moniruzzaman, F. Du, N. Romero, K. I. Winey, Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method, Polymer 47 (2006), 293-298.
DOI: 10.1016/j.polymer.2005.11.011
Google Scholar
[14]
H. Chen, O. Jacobs, W. Wu, G. Rüdiger, B. Schaedel, Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites, Polym. Test. 26 (2007), 351–360.
DOI: 10.1016/j.polymertesting.2006.11.004
Google Scholar
[15]
G. Szebényi, G. Romhány, Preparation of MWCNT reinforced epoxy nanocomposite and examination of its mechanical properties, Plast. Rubber Compos. 37 (2008), 214-218.
DOI: 10.1179/174328908x309376
Google Scholar
[16]
A. Tuğrul Seyhan, M. Tanoğlu, K. Schulte, Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling, Mat. Sci. Eng.: A 523 (2009), 85-92.
DOI: 10.1016/j.msea.2009.05.035
Google Scholar
[17]
G. Szebényi, G. Romhány, The effect of different dispersion methods on the mechanical properties of MWCNT/carbon fiber/epoxy hibrid composites, in: 4th China-Europe Symposium on Processing and and Properties of Reinforced Polymers (2012), P-044.
Google Scholar
[18]
A. May-Pat, F. Aviles, P. Toro, M. Yazdani-Pedram, J. V. Cauich-Rodriguez, Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids, Express Polym. Lett. 6 (2012), 96-106.
DOI: 10.3144/expresspolymlett.2012.11
Google Scholar
[19]
Y. Luo, Y. Zhao, J. Cai, Y. Duan, S. Du, Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites, Mater. Design 33 (2012), 405-412.
DOI: 10.1016/j.matdes.2011.04.033
Google Scholar
[20]
J. Li, Z. Wu, C. Huang, H. Liu, R. Huang, L. Li, Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs, Compos. Sci. Technol. 90 (2014), 166-173.
DOI: 10.1016/j.compscitech.2013.11.009
Google Scholar
[21]
G. Szebényi, G. Romhány, The effect of electron irradiation on the mechanical properties of MWCNT/carbon fiber reinforced hybrid nanocomposites, Mater. Sci. Forum. 659 (2010), 91-95.
DOI: 10.4028/www.scientific.net/msf.659.91
Google Scholar
[22]
G. Szebényi, G. Romhány, B. Vajna, T. Czvikovszky, EB treatment of carbon nanotube-reinforced polymer composites, Radiat. Phys. Chem. 81 (2012), 1383-1388.
DOI: 10.1016/j.radphyschem.2011.11.015
Google Scholar
[22]
M. Maciejewska, M. Zaborski, Effect of ionic liquids on the dispersion of zinc oxide and silica nanoparticles, vulcanisation behaviour and properties of NBR composites, Express Polym. Lett. 8 (2014), 932-940.
DOI: 10.3144/expresspolymlett.2014.94
Google Scholar