Effect of an Ionic Liquid on the Flexural and Fracture Mechanical Properties of EP/MWCNT Nanocomposites

Article Preview

Abstract:

The improvement of interfacial adhesion between multiwalled carbon nanotubes (MWCNTs) and epoxy resin (EP) was investigated in nanocomposites with the addition of an ionic liquid (IL, 1-Ethyl-3-methyl imidazolium tetrafluoroborate - EMIM BF4) as interfacial adhesion promoter. MWCNT (0, 0.3 and 0.5 weight%) was dispersed in EP through diluting an MWCNT-rich masterbatch prepared in presence and absence of IL. Three point bending and compact tension (CT) fracture mechanical tests were performed on specimens with different MWCNT contents with and without IL surfactant. IL addition resulted in easier dispersion of MWCNT in the EP masterbatch. With the addition of the IL the three point bending strength, the bending modulus of elasticity and the critical force required for crack propagation have increased significantly at the optimal, 0.3 weight% MWCNT content. Scanning electron microscopic (SEM) investigation of the fracture surfaces of the CT specimens revealed that incorporation of MWCNTs and its IL-assisted dispersion produced rougher surfaces suggesting higher fracture toughness than the reference EP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Technol. 65 (2005), 2300–2313.

DOI: 10.1016/j.compscitech.2005.04.021

Google Scholar

[2] S. Ganguli, M. Bhuyan, L. Allie, H. Aglan, Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy, J. Mater. Sci. 40 (2005), 3593 – 3595.

DOI: 10.1007/s10853-005-2891-x

Google Scholar

[3] A. T. Seyhan, F. H. Gojny, M. Tanoglu, K. Schulte, Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites, Eur. Polym. J. 43 (2007), 374–379.

DOI: 10.1016/j.eurpolymj.2006.11.018

Google Scholar

[4] J. Gu, X. Yang, Z. Lv, N. Li, C. Liang, Q. Zhang, Int. J. Heat Mass 92 (2016), 15-22.

Google Scholar

[5] N. Ramdani, M. Derradji, . Feng, Z. Tong, J. Wang, E. Mokhnache, W. Liu, Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites, Mater. Lett. 155 (2015), 34-37.

DOI: 10.1016/j.matlet.2015.04.097

Google Scholar

[6] S. D. A. S. Ramoa, G. M. O. Barra, C. Merlini, S. Livi, B. G. Soares, A. Pegoretti, Novel electrically conductive polyurethane/montmorillonite-polypyrrole nanocomposites, Express Polym. Lett. 9 (2015), 945-958.

DOI: 10.3144/expresspolymlett.2015.85

Google Scholar

[7] X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Part A-Appl. S. 82 (2016).

DOI: 10.1016/j.compositesa.2015.12.006

Google Scholar

[8] K.A. Alnefaie, S.M. Aldousari, U.A. Khashaba, New development of self-damping MWCNT composites, Compos. Part A-Appl. S. 52 (2013), 1-11.

DOI: 10.1016/j.compositesa.2013.04.011

Google Scholar

[9] R.K. Patel, B. Bhattacharya, S. Basu, Effect of interphase properties on the damping response of polymer nano-composites, Mech. Res. Commun. 35 (2008), 115-125.

DOI: 10.1016/j.mechrescom.2007.08.005

Google Scholar

[10] H. Liu, P. Bandyopadhyay, N. H. Kim, B. Moon, J. H. Lee, Surface modified graphene oxide/poly(vinyl alcohol) composite for enhanced hydrogen gas barrier film, Polym. Test. 50 (2016), 49-56.

DOI: 10.1016/j.polymertesting.2015.12.007

Google Scholar

[11] W. Chen, H. Lu, S. R. Nutt, The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites, Compos. Sci. Technol. 68 (2008), 2535-2542.

DOI: 10.1016/j.compscitech.2008.05.011

Google Scholar

[12] Y. S. Song, J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43 (2005), 1378–1385.

DOI: 10.1016/j.carbon.2005.01.007

Google Scholar

[13] M. Moniruzzaman, F. Du, N. Romero, K. I. Winey, Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method, Polymer 47 (2006), 293-298.

DOI: 10.1016/j.polymer.2005.11.011

Google Scholar

[14] H. Chen, O. Jacobs, W. Wu, G. Rüdiger, B. Schaedel, Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites, Polym. Test. 26 (2007), 351–360.

DOI: 10.1016/j.polymertesting.2006.11.004

Google Scholar

[15] G. Szebényi, G. Romhány, Preparation of MWCNT reinforced epoxy nanocomposite and examination of its mechanical properties, Plast. Rubber Compos. 37 (2008), 214-218.

DOI: 10.1179/174328908x309376

Google Scholar

[16] A. Tuğrul Seyhan, M. Tanoğlu, K. Schulte, Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling, Mat. Sci. Eng.: A 523 (2009), 85-92.

DOI: 10.1016/j.msea.2009.05.035

Google Scholar

[17] G. Szebényi, G. Romhány, The effect of different dispersion methods on the mechanical properties of MWCNT/carbon fiber/epoxy hibrid composites, in: 4th China-Europe Symposium on Processing and and Properties of Reinforced Polymers (2012), P-044.

Google Scholar

[18] A. May-Pat, F. Aviles, P. Toro, M. Yazdani-Pedram, J. V. Cauich-Rodriguez, Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids, Express Polym. Lett. 6 (2012), 96-106.

DOI: 10.3144/expresspolymlett.2012.11

Google Scholar

[19] Y. Luo, Y. Zhao, J. Cai, Y. Duan, S. Du, Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites, Mater. Design 33 (2012), 405-412.

DOI: 10.1016/j.matdes.2011.04.033

Google Scholar

[20] J. Li, Z. Wu, C. Huang, H. Liu, R. Huang, L. Li, Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs, Compos. Sci. Technol. 90 (2014), 166-173.

DOI: 10.1016/j.compscitech.2013.11.009

Google Scholar

[21] G. Szebényi, G. Romhány, The effect of electron irradiation on the mechanical properties of MWCNT/carbon fiber reinforced hybrid nanocomposites, Mater. Sci. Forum. 659 (2010), 91-95.

DOI: 10.4028/www.scientific.net/msf.659.91

Google Scholar

[22] G. Szebényi, G. Romhány, B. Vajna, T. Czvikovszky, EB treatment of carbon nanotube-reinforced polymer composites, Radiat. Phys. Chem. 81 (2012), 1383-1388.

DOI: 10.1016/j.radphyschem.2011.11.015

Google Scholar

[22] M. Maciejewska, M. Zaborski, Effect of ionic liquids on the dispersion of zinc oxide and silica nanoparticles, vulcanisation behaviour and properties of NBR composites, Express Polym. Lett. 8 (2014), 932-940.

DOI: 10.3144/expresspolymlett.2014.94

Google Scholar