p.19
p.24
p.32
p.37
p.42
p.48
p.55
p.59
p.64
The Effect of Alkaline Ratios of NaOH to NH3 on the Formation of Nanostructured Titania
Abstract:
The effect of alkaline solvent of NaOH and NH3 in the synthesis of nanostructured titania (TiO2) has been studied. Powder of anatase titania as the precursor was mixed with various volume ratios of 10 M of NaOH and 15 M of NH3. The mixture was heated in Teflon-lined autoclave at 150 °C for 24 h. The as-synthesized TiO2 powders were then washed with 0.1 M HCl and calcined at 300 °C. The calcined samples were characterized using TEM (transmission electron microscope), and XRD (X-Ray diffraction). Raman spectroscopy was further used to determine the contributing crystalline phases for the synthesized TiO2. It is shown that varying the solvent ratios of NOH to NH3 resulted in nanotubes, nanosheets, and nanoparticle morphology of TiO2. The TEM images showed the formation of nanotube structure in alkaline ratio NaOH:NH3 of 1:0 and 3:1, with diameter of about 10 nm. At volume ratio of 1:1, the nanosheets and nanotubes both were formed and at volume ratio of NaOH:NH3 of 1:3, nanosheets contributed as its main morphology. While, at fully NH3 solvent, the nanospheres with anatase domain were produced. Raman spectra confirmed that the major contributor for hydrothermal synthesis employing less NaOH for volume ratio of NaOH:NH3 of 3:1 was predominantly anatase with slight presence of titanate. For volume ratio at higher NH3 the presence of titanate is not prominent, but the morphology has already changed into more nanosheet and then nanospheres. The crystallinity of TiO2 anatase crystalline phase was enhanced as more NH3 utilized.
Info:
Periodical:
Pages:
42-47
Citation:
Online since:
March 2017
Keywords:
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: