A Novel Approach of Core-Shell Ag@Pt Nanoparticles Production

Article Preview

Abstract:

Pt-based nanoparticles (NPs) have numerous applications, such as, as catalyst, in car exhaust systems, gas sensors, biosensors and cancer therapy. One of the Pt based NPs which has been successfully produced is core-shell Ag@Pt NPs. Numerous methods for the synthesis of this material have been reported. This paper reports a fully new approach of chemical mediated synthesis for core-shell Ag@Pt NPs. Characterization process for the synthesized Ag@Pt NPs, carried out by the UV-vis Spectroscopy, Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) showed that the core AgNPs have approximate sizes of 18 nm in diameter are shelled with Pt and the sizes of core-shell Ag@Pt NPs were estimated to be around 29 nm in diameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Deogratias, M. Ji, Y. Zhang, J. Liu, J. Zhang, and H. Zhu, Core@ shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction, Nano Research, vol. 8, pp.271-280, (2015).

DOI: 10.1007/s12274-014-0664-z

Google Scholar

[2] H. Liu, F. Ye, Q. Yao, H. Cao, J. Xie, J. Y. Lee, and J. Yang, Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning, Scientific reports, vol. 4, (2014).

DOI: 10.1038/srep03969

Google Scholar

[3] E. Gharibshahi and E. Saion, Influence of dose on particle size and optical properties of colloidal platinum nanoparticles, International journal of molecular sciences, vol. 13, pp.14723-14741, (2012).

DOI: 10.3390/ijms131114723

Google Scholar

[4] D. McNally, M. Agnello, B. Pastore, J. R. Applegate, E. Westphal, and S. D. Bakrania, A Study of Fuel and Reactor Design for Platinum Nanoparticle Catalyzed Microreactors, Journal of Nanomaterials, vol. 2015, (2015).

DOI: 10.1155/2015/538752

Google Scholar

[5] C. -L. Sun, J. -S. Su, S. -Y. Lai, and Y. -J. Lu, Size Effects of Pt Nanoparticle/Graphene Composite Materials on the Electrochemical Sensing of Hydrogen Peroxide, Journal of Nanomaterials, vol. 2015, (2015).

DOI: 10.1155/2015/861061

Google Scholar

[6] A. Chen and P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chem. Rev, vol. 110, pp.3767-3804, (2010).

DOI: 10.1021/cr9003902

Google Scholar

[7] S. Hoshika, F. Nagano, T. Tanaka, T. Ikeda, T. Wada, K. Asakura, K. Koshiro, D. Selimovic, Y. Miyamoto, and S. Sidhu, Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin, Dental materials journal, vol. 29, pp.682-689, (2010).

DOI: 10.4012/dmj.2009-125

Google Scholar

[8] J. Xie, S. Wang, L. Aryasomayajula, and V. Varadan, Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing, Nanotechnology, vol. 18, p.065503, (2007).

DOI: 10.1088/0957-4484/18/6/065503

Google Scholar

[9] L. Liu, P. Miao, Y. Xu, Z. Tian, Z. Zou, and G. Li, Study of Pt/TiO 2 nanocomposite for cancer-cell treatment, Journal of Photochemistry and Photobiology B: Biology, vol. 98, pp.207-210, (2010).

DOI: 10.1016/j.jphotobiol.2010.01.005

Google Scholar

[10] S. Chowdhury, F. Yusof, W. W. A. W. Salim, N. Sulaiman, and M. O. Faruck, An overview of drug delivery vehicles for cancer treatment: Nanocarriers and nanoparticles including photovoltaic nanoparticles, Journal of Photochemistry and Photobiology B: Biology, vol. 164, pp.151-159, (2016).

DOI: 10.1016/j.jphotobiol.2016.09.013

Google Scholar

[11] L. Liu, P. Miao, Y. Xu, Z. Tian, Z. Zou, and G. Li, Study of Pt/TiO< sub> 2</sub> nanocomposite for cancer-cell treatment, Journal of Photochemistry and Photobiology B: Biology, vol. 98, pp.207-210, (2010).

DOI: 10.1016/j.jphotobiol.2010.01.005

Google Scholar

[12] J. Xu, Z. -D. Chen, Y. Sun, C. -M. Chen, and Z. -Y. Jiang, Photocatalytic killing effect of gold-doped TiO2 nanocomposites on human colon carcinoma LoVo cells, Acta Chimica Sinica, vol. 66, pp.1163-1167, (2008).

Google Scholar

[13] A. T. N. Dao, D. M. Mott, K. Higashimine, and S. Maenosono, Enhanced electronic properties of Pt@ Ag heterostructured nanoparticles, Sensors, vol. 13, pp.7813-7826, (2013).

DOI: 10.3390/s130607813

Google Scholar

[14] C. Wang, N. M. Markovic, and V. R. Stamenkovic, Advanced platinum alloy electrocatalysts for the oxygen reduction reaction, Acs Catalysis, vol. 2, pp.891-898, (2012).

DOI: 10.1021/cs3000792

Google Scholar

[15] H. Liu and J. Yang, Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature, Journal of Materials Chemistry A, vol. 2, pp.7075-7081, (2014).

DOI: 10.1039/c4ta00243a

Google Scholar

[16] S. Chowdhury, F. Yusof, M. O. Faruck, and N. Sulaiman, Process Optimization of Silver Nanoparticle Synthesis Using Response Surface Methodology, Procedia Engineering, vol. 148, pp.992-999, (2016).

DOI: 10.1016/j.proeng.2016.06.552

Google Scholar

[17] S. Chowdhury, F. Yusof, N. Sulaiman, S. N. Sidek, and M. O. Faruck, A modeling study by artificial neural network on process parameter optimization for silver nanoparticle production, ARPN Journal of Engineering and Applied Sciences, vol. 11, pp.12206-12211, (2016).

Google Scholar

[18] M. Noroozi, A. Zakaria, M. M. Moksin, Z. A. Wahab, and A. Abedini, Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent, International journal of molecular sciences, vol. 13, pp.8086-8096, (2012).

DOI: 10.3390/ijms13078086

Google Scholar

[19] S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S. R. K. Pandian, J. Muniyandi, N. Hariharan, and S. H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids and Surfaces B: Biointerfaces, vol. 74, pp.328-335, (2009).

DOI: 10.1016/j.colsurfb.2009.07.048

Google Scholar

[20] K. Mavani and M. Shah, Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent, in International Journal of Engineering Research and Technology, (2013).

Google Scholar

[21] S. Balu, C. Bhakat, and S. Harke, Synthesis of silver nanoparticles by chemical reduction and their antimicrobial activity, in International Journal of Engineering Research and Technology, (2012).

Google Scholar