[1]
X. Guo, K. Nakanishi, K. Kanamori, Y. Zhu, H. Yang, Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation, J. Eur. Ceram. Soc. 34(3) (2014) 817-823.
DOI: 10.1016/j.jeurceramsoc.2013.08.016
Google Scholar
[2]
P. Orosco, M. del, C. Ruiz, J. González, Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism, Powder Technol. 267 (2014) 111-118.
DOI: 10.1016/j.powtec.2014.07.009
Google Scholar
[3]
Y. Dong, X. Liu, Q. Ma, G. Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials, J. Membrane Sci. 285 (2006) 173-181.
DOI: 10.1016/j.memsci.2006.08.032
Google Scholar
[4]
J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin, J. Alloy Compd. 482 (2009) 429-436.
DOI: 10.1016/j.jallcom.2009.04.044
Google Scholar
[5]
J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Effect of impurities content from minerals on phase transformation, densification and crystallization of alpha-cordierite glass-ceramic, J. Alloy Compd. 509 (2011) 7645-7651.
DOI: 10.1016/j.jallcom.2011.04.129
Google Scholar
[6]
S.M. Logvinkov, G.D. Semchenko, D.A. Kobyzeva, V.I. Babushkin, Thermodynamics of phase relations in the subsolidus of the MgO – Al2O3 – SiO2 system, Refract. Ind. Ceram. 42(11-12) (2001) 434-439.
DOI: 10.1023/a:1015087606871
Google Scholar
[7]
F.J. Torres, J. Alarcón, Phase evolution by thermal treatment of equimolar cobalt–magnesium cordierite glass powders, J. Eur. Ceram. Soc. 24(4) (2004) 681-691.
DOI: 10.1016/s0955-2219(03)00265-6
Google Scholar
[8]
Z. Yuea, J. Zhoua, Z. Maa, J. Baoa, Z. Guia, L. Lia, Crystallization and dielectric properties of cordierite gel-derived glasses containing B2O3 and P2O5, Ferroelectrics, 262(1) (2001) 31-36.
Google Scholar
[9]
X. Hao, Z. Luo, X. Hu, J. Song, Y. Tang and A. Lu, Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics, J. Non-Cryst. Solids 432 (2016) 265-270.
DOI: 10.1016/j.jnoncrysol.2015.10.017
Google Scholar
[10]
L. Barbieri, C. Leonelli, T. Manfredini, R. Bertoncello, Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system, J. Mater. Sci. 29(23) (1994) 6273-6280.
DOI: 10.1007/bf00354571
Google Scholar
[11]
C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G.C. Pellacani, Crystallization of some anorthite-diopside glass precursors, J. Mater. Sci. 26(18) (1991) 5041-5046.
DOI: 10.1007/bf00549889
Google Scholar
[12]
H.S. Kim, R.D. Rawlings, P.S. Rogers, Sintering and crystallization phenomena in Silceram glass, J. Mater. Sci. 24(3) (1989) 1025-1037.
DOI: 10.1007/bf01148794
Google Scholar
[13]
M. Rezvani, B.E. Yekta, V.K. Marghussian, Utilization of DTA in determination of crystallization mechanism in SiO2–Al2O3–CaO–MgO(R2O) glasses in presence of various nuclei, J. Eur. Ceram. Soc. 25 (2005) 1525-1530.
DOI: 10.1016/j.jeurceramsoc.2004.05.010
Google Scholar
[14]
J. Yang, S.G. Zhang, B. Liu, D.A. Pan, C. L. Wu, A.A. Volinsky, Effect of TiO2 on crystallization, microstructure and mechanical properties of glass ceramic, J. Iron Steel Res. Int. 22(12) (2015) 1113-1117.
DOI: 10.1016/s1006-706x(15)30120-5
Google Scholar
[15]
U.M. Fathia, A. Johnson, The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dentals use, Dent. Mater. 32 (2016) 311-322.
DOI: 10.1016/j.dental.2015.11.012
Google Scholar
[16]
K. Maeda, Y. Sera, A. Yasumori, Effect of molybdenum and titanium oxides on mechanical and thermal properties of cordierite–enstatite glass-ceramics, J. Non-Cryst. Solids 434 (2016) 13-22.
DOI: 10.1016/j.jnoncrysol.2015.12.001
Google Scholar
[17]
C. Liu, L. Liu, K. Tan, L. Zhang, K. Tang, X. Shi, Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag, Ceram. Int. 42 (2016) 734–742.
DOI: 10.1016/j.ceramint.2015.08.174
Google Scholar
[18]
M. Brown, P. Gallagher, Handbook of thermal analysis and calorimetry, 1st Edition, South Africa: ELSEVIER, (2003).
Google Scholar
[19]
J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Synthesis and characterization of xMgO–1. 5Al2O3–5SiO2 (x = 2. 6–3. 0) system using mainly talc and kaolin through the glass route, Mater. Chem. Phys. 129 (2011) 910-918.
DOI: 10.1016/j.matchemphys.2011.05.026
Google Scholar