Effect of Alteration Ratios of Magnesia and Alumina in Non-Stoichiometric Cordierite Composition Formulations (2.(8-n)MgO.1.(5+n)Al2O3.5SiO2) on Phase Transformation and Crystallization

Article Preview

Abstract:

This study focus on synthesis of α-phase cordierite using different non-stoichiometric cordierite composition through solid state reaction by adjusting the ratio of magnesia, MgO and alumina, Al2O3 in the cordierite composition formulation respectively. The qualitative and quantitative of phase analysis was carried out by X-ray diffractive (XRD) technique and Rietveld structural refinement method. Differential thermal analysis (DTA) was employed to investigate the crystallization behavior of various cordierite formulations as the function of temperature. The scanning electron microscopy (SEM) was also performed. Cordierite with formulation of 2.5MgO.1.8Al2O3.5SiO2 constitutes up to 96.4 wt% when the samples was sintered for 2 hours at the optimal temperature of 1375 °C. The SEM micrograph revealed that the approaching single α-Cordierite sample obtained densified body with well alignment of crystal structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Guo, K. Nakanishi, K. Kanamori, Y. Zhu, H. Yang, Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation, J. Eur. Ceram. Soc. 34(3) (2014) 817-823.

DOI: 10.1016/j.jeurceramsoc.2013.08.016

Google Scholar

[2] P. Orosco, M. del, C. Ruiz, J. González, Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism, Powder Technol. 267 (2014) 111-118.

DOI: 10.1016/j.powtec.2014.07.009

Google Scholar

[3] Y. Dong, X. Liu, Q. Ma, G. Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials, J. Membrane Sci. 285 (2006) 173-181.

DOI: 10.1016/j.memsci.2006.08.032

Google Scholar

[4] J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin, J. Alloy Compd. 482 (2009) 429-436.

DOI: 10.1016/j.jallcom.2009.04.044

Google Scholar

[5] J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Effect of impurities content from minerals on phase transformation, densification and crystallization of alpha-cordierite glass-ceramic, J. Alloy Compd. 509 (2011) 7645-7651.

DOI: 10.1016/j.jallcom.2011.04.129

Google Scholar

[6] S.M. Logvinkov, G.D. Semchenko, D.A. Kobyzeva, V.I. Babushkin, Thermodynamics of phase relations in the subsolidus of the MgO – Al2O3 – SiO2 system, Refract. Ind. Ceram. 42(11-12) (2001) 434-439.

DOI: 10.1023/a:1015087606871

Google Scholar

[7] F.J. Torres, J. Alarcón, Phase evolution by thermal treatment of equimolar cobalt–magnesium cordierite glass powders, J. Eur. Ceram. Soc. 24(4) (2004) 681-691.

DOI: 10.1016/s0955-2219(03)00265-6

Google Scholar

[8] Z. Yuea, J. Zhoua, Z. Maa, J. Baoa, Z. Guia, L. Lia, Crystallization and dielectric properties of cordierite gel-derived glasses containing B2O3 and P2O5, Ferroelectrics, 262(1) (2001) 31-36.

Google Scholar

[9] X. Hao, Z. Luo, X. Hu, J. Song, Y. Tang and A. Lu, Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics, J. Non-Cryst. Solids 432 (2016) 265-270.

DOI: 10.1016/j.jnoncrysol.2015.10.017

Google Scholar

[10] L. Barbieri, C. Leonelli, T. Manfredini, R. Bertoncello, Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system, J. Mater. Sci. 29(23) (1994) 6273-6280.

DOI: 10.1007/bf00354571

Google Scholar

[11] C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G.C. Pellacani, Crystallization of some anorthite-diopside glass precursors, J. Mater. Sci. 26(18) (1991) 5041-5046.

DOI: 10.1007/bf00549889

Google Scholar

[12] H.S. Kim, R.D. Rawlings, P.S. Rogers, Sintering and crystallization phenomena in Silceram glass, J. Mater. Sci. 24(3) (1989) 1025-1037.

DOI: 10.1007/bf01148794

Google Scholar

[13] M. Rezvani, B.E. Yekta, V.K. Marghussian, Utilization of DTA in determination of crystallization mechanism in SiO2–Al2O3–CaO–MgO(R2O) glasses in presence of various nuclei, J. Eur. Ceram. Soc. 25 (2005) 1525-1530.

DOI: 10.1016/j.jeurceramsoc.2004.05.010

Google Scholar

[14] J. Yang, S.G. Zhang, B. Liu, D.A. Pan, C. L. Wu, A.A. Volinsky, Effect of TiO2 on crystallization, microstructure and mechanical properties of glass ceramic, J. Iron Steel Res. Int. 22(12) (2015) 1113-1117.

DOI: 10.1016/s1006-706x(15)30120-5

Google Scholar

[15] U.M. Fathia, A. Johnson, The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dentals use, Dent. Mater. 32 (2016) 311-322.

DOI: 10.1016/j.dental.2015.11.012

Google Scholar

[16] K. Maeda, Y. Sera, A. Yasumori, Effect of molybdenum and titanium oxides on mechanical and thermal properties of cordierite–enstatite glass-ceramics, J. Non-Cryst. Solids 434 (2016) 13-22.

DOI: 10.1016/j.jnoncrysol.2015.12.001

Google Scholar

[17] C. Liu, L. Liu, K. Tan, L. Zhang, K. Tang, X. Shi, Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag, Ceram. Int. 42 (2016) 734–742.

DOI: 10.1016/j.ceramint.2015.08.174

Google Scholar

[18] M. Brown, P. Gallagher, Handbook of thermal analysis and calorimetry, 1st Edition, South Africa: ELSEVIER, (2003).

Google Scholar

[19] J. Banjuraizah, H. Mohamad, Z.A. Ahmad, Synthesis and characterization of xMgO–1. 5Al2O3–5SiO2 (x = 2. 6–3. 0) system using mainly talc and kaolin through the glass route, Mater. Chem. Phys. 129 (2011) 910-918.

DOI: 10.1016/j.matchemphys.2011.05.026

Google Scholar