[1]
M.A. A Subramanian, D. Li, N. Duan, B.A.A. Reisner, A.W.W. Sleight, High Dielectric Constant in Cu3Ti4O12 and Cu3Ti3FeO12 Phases, J. Solid State Chem. 151 (2000) 323-325.
DOI: 10.1006/jssc.2000.8703
Google Scholar
[2]
A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro, Giant dielectric constant response in a copper-titanate, Solid State Commun. 115 (2000) 217-220.
DOI: 10.1016/s0038-1098(00)00182-4
Google Scholar
[3]
C.C. Homes, T. Vogt, S.M. Shapiro, W. Si, S. Wakimoto, M.A. Subramanian, Optical response of high-dielectric-constant perovskite-related oxide, Phys. Rev. B. 293 (2001) 673-676.
DOI: 10.1126/science.1061655
Google Scholar
[4]
J. Li, L. Hou, R. Jia, L. Gao, Influences of CuAl2O4 doping on the dielectric properties of CaCu3Ti4O12 ceramics, J. Mater. Sci. Mater. Electron. 26 (2015) 5085-5091.
DOI: 10.1007/s10854-015-3033-0
Google Scholar
[5]
H. Eun, S. Choi, Y. Hong, S. Yoo, Improved dielectric properties of the CaCu3Ti4O12 composites using BaTiO3-coated powder as precursor, J. Alloys Compd. 610, (2014) 594-599.
DOI: 10.1016/j.jallcom.2014.04.215
Google Scholar
[6]
F. Amaral, M.A. Valente, L. C. Costa, Dielectric properties of CaCu3Ti4O12 (CCTO) doped with GeO2, J. Non. Cryst. Solids, 356 (2010) 822-827.
DOI: 10.1016/j.jnoncrysol.2009.07.047
Google Scholar
[7]
H. Yu, H. Liu, H. Hao, D. Luo, M. Cao, Dielectric properties of CaCu3Ti4O12 ceramics modified by SrTiO3, Mater. Lett. 62 (2008) 1353-1355.
DOI: 10.1016/j.matlet.2007.08.052
Google Scholar
[8]
A. Rajabtabar-Darvishi, R. Bayati, L.D. Wang, W.L. Li, J. Sheng, W.D. Fei, Giant dielectric response and low dielectric loss in Al2O3 grafted CaCu3Ti4O12 ceramics, J. Appl. Phys. 094103 (2015) 1.
DOI: 10.1063/1.4914052
Google Scholar
[9]
J. Li, R. Jia, X. Tang, X. Zhao, S. Li, Enhanced electric breakdown field of CaCu3Ti4O12 ceramics: tuning of grain boundary by a secondary phase, J. Appl. Phys. D, 32 (2013) 325304-325309.
DOI: 10.1088/0022-3727/46/32/325304
Google Scholar
[10]
G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics, J. Appl Phys. D, 38 (2005) 1824-1827.
DOI: 10.1088/0022-3727/38/11/022
Google Scholar
[11]
K. Kim, J. Lee, K. Lee, D. Kim, D. Riu, S. Bo, Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics, Mater. Research Bulletin, 43 (2008) 284-291.
DOI: 10.1016/j.materresbull.2007.03.014
Google Scholar
[12]
T. Fang, L. -T. Mei, H. -F. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12, Acta Mater. 54 (2006) 2867-2875.
DOI: 10.1016/j.actamat.2006.02.037
Google Scholar
[13]
P.K. Jena, E.A. Brocchi, I.G. Solórzano, M.S. Motta, Identification of a third phase in Cu–Al2O3 nanocomposites prepared by chemical routes, Mater. Sci. and Eng. A, 371 (2004) 72-78.
DOI: 10.1016/s0921-5093(03)00642-7
Google Scholar
[14]
R. Jia, X. Zhao, J. Li, X. Tang, Colossal breakdown electric field and dielectric response of Al-doped CaCu3Ti4O12 ceramics, Mater. Sci. Eng. B. 185 (2014) 79-85.
DOI: 10.1016/j.mseb.2014.02.015
Google Scholar
[15]
J. Yuan, Y.H. Lin, H. Lu, B. Cheng, C. -W. Nan, Dielectric and varistor behavior of CaCu3Ti4O12–MgTiO3 composite ceramics, J. Am. Ceram. Soc. 94 (2011) 1966-(1969).
DOI: 10.1111/j.1551-2916.2011.04533.x
Google Scholar
[16]
W.F.F.W. Ali, M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe2O3 in Y3Fe5O12 (YIG) formulation, J. Mater. Sci. Mater. Electron. 25 (2014).
DOI: 10.1007/s10854-013-1624-1
Google Scholar
[17]
D. Guha, A. Banerjee, C. Kumar, Y.M.M. Antar, Segmented Hemispherical DRA: New Geometry Characterized and Investigated in Multi-Element Composite Forms for Wideband Antenna Applications, IEEET. Antenn. Propag. 60 (2012) 1605-1610.
DOI: 10.1109/tap.2011.2180345
Google Scholar