Dielectric Properties of Al2O3/CaCu3Ti4O12 Composite at High Frequency Range

Article Preview

Abstract:

The dielectric properties of CCTO with addition Al2O3 prepared via solid state reaction investigated and reported at 1 GHz. With addition Al2O3 from 20 wt% to 80 wt%, secondary phase starts appear in XRD analysis such as copper dialuminium oxide (CuAl2O4), calcium titanate (CaTiO3) and titanium oxide (TiO2). These secondary phases show great influence on morphology and grain size of Al2O3/ CCTO composites. Hence, the addition of only 20 wt% Al2O3, the dielectric constant of CCTO reduce almost 50% and tangent loss is in between 0.0028 to 0.0630 which is very low and this characterization is suitable to use in electronic application in high frequency range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. A Subramanian, D. Li, N. Duan, B.A.A. Reisner, A.W.W. Sleight, High Dielectric Constant in Cu3Ti4O12 and Cu3Ti3FeO12 Phases, J. Solid State Chem. 151 (2000) 323-325.

DOI: 10.1006/jssc.2000.8703

Google Scholar

[2] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro, Giant dielectric constant response in a copper-titanate, Solid State Commun. 115 (2000) 217-220.

DOI: 10.1016/s0038-1098(00)00182-4

Google Scholar

[3] C.C. Homes, T. Vogt, S.M. Shapiro, W. Si, S. Wakimoto, M.A. Subramanian, Optical response of high-dielectric-constant perovskite-related oxide, Phys. Rev. B. 293 (2001) 673-676.

DOI: 10.1126/science.1061655

Google Scholar

[4] J. Li, L. Hou, R. Jia, L. Gao, Influences of CuAl2O4 doping on the dielectric properties of CaCu3Ti4O12 ceramics, J. Mater. Sci. Mater. Electron. 26 (2015) 5085-5091.

DOI: 10.1007/s10854-015-3033-0

Google Scholar

[5] H. Eun, S. Choi, Y. Hong, S. Yoo, Improved dielectric properties of the CaCu3Ti4O12 composites using BaTiO3-coated powder as precursor, J. Alloys Compd. 610, (2014) 594-599.

DOI: 10.1016/j.jallcom.2014.04.215

Google Scholar

[6] F. Amaral, M.A. Valente, L. C. Costa, Dielectric properties of CaCu3Ti4O12 (CCTO) doped with GeO2, J. Non. Cryst. Solids, 356 (2010) 822-827.

DOI: 10.1016/j.jnoncrysol.2009.07.047

Google Scholar

[7] H. Yu, H. Liu, H. Hao, D. Luo, M. Cao, Dielectric properties of CaCu3Ti4O12 ceramics modified by SrTiO3, Mater. Lett. 62 (2008) 1353-1355.

DOI: 10.1016/j.matlet.2007.08.052

Google Scholar

[8] A. Rajabtabar-Darvishi, R. Bayati, L.D. Wang, W.L. Li, J. Sheng, W.D. Fei, Giant dielectric response and low dielectric loss in Al2O3 grafted CaCu3Ti4O12 ceramics, J. Appl. Phys. 094103 (2015) 1.

DOI: 10.1063/1.4914052

Google Scholar

[9] J. Li, R. Jia, X. Tang, X. Zhao, S. Li, Enhanced electric breakdown field of CaCu3Ti4O12 ceramics: tuning of grain boundary by a secondary phase, J. Appl. Phys. D, 32 (2013) 325304-325309.

DOI: 10.1088/0022-3727/46/32/325304

Google Scholar

[10] G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics, J. Appl Phys. D, 38 (2005) 1824-1827.

DOI: 10.1088/0022-3727/38/11/022

Google Scholar

[11] K. Kim, J. Lee, K. Lee, D. Kim, D. Riu, S. Bo, Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics, Mater. Research Bulletin, 43 (2008) 284-291.

DOI: 10.1016/j.materresbull.2007.03.014

Google Scholar

[12] T. Fang, L. -T. Mei, H. -F. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12, Acta Mater. 54 (2006) 2867-2875.

DOI: 10.1016/j.actamat.2006.02.037

Google Scholar

[13] P.K. Jena, E.A. Brocchi, I.G. Solórzano, M.S. Motta, Identification of a third phase in Cu–Al2O3 nanocomposites prepared by chemical routes, Mater. Sci. and Eng. A, 371 (2004) 72-78.

DOI: 10.1016/s0921-5093(03)00642-7

Google Scholar

[14] R. Jia, X. Zhao, J. Li, X. Tang, Colossal breakdown electric field and dielectric response of Al-doped CaCu3Ti4O12 ceramics, Mater. Sci. Eng. B. 185 (2014) 79-85.

DOI: 10.1016/j.mseb.2014.02.015

Google Scholar

[15] J. Yuan, Y.H. Lin, H. Lu, B. Cheng, C. -W. Nan, Dielectric and varistor behavior of CaCu3Ti4O12–MgTiO3 composite ceramics, J. Am. Ceram. Soc. 94 (2011) 1966-(1969).

DOI: 10.1111/j.1551-2916.2011.04533.x

Google Scholar

[16] W.F.F.W. Ali, M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, The behavior of high frequency tunable dielectric resonator antenna (DRA) with the addition of excess Fe2O3 in Y3Fe5O12 (YIG) formulation, J. Mater. Sci. Mater. Electron. 25 (2014).

DOI: 10.1007/s10854-013-1624-1

Google Scholar

[17] D. Guha, A. Banerjee, C. Kumar, Y.M.M. Antar, Segmented Hemispherical DRA: New Geometry Characterized and Investigated in Multi-Element Composite Forms for Wideband Antenna Applications, IEEET. Antenn. Propag. 60 (2012) 1605-1610.

DOI: 10.1109/tap.2011.2180345

Google Scholar