[1]
F. Simančík, Metallic foams – ultra light materials for structural applications, Nźynieria Materiałowa, 5(5) (2001) 823–828.
Google Scholar
[2]
A.A. Gokhale, H. V. Ravi Kumar, B. Sudhakar, S. N. Sahu, H. Basumatary, S. Dhara, Cellular metals and ceramics for defence applications, Defence Science Journal, 61(6) (2011) 567–575.
DOI: 10.14429/dsj.61.640
Google Scholar
[3]
R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich, Influence of processing parameters on aluminium foam produced by space holder technique, Mater. Design. 30(6) (2009) 1878–1885.
DOI: 10.1016/j.matdes.2008.09.027
Google Scholar
[4]
D.X. Sun, Y.Y. Zhao, Phase changes in sintering of Al/Mg/NaCl compacts for manufacturing Al foams by the sintering and dissolution process, Mater. Lett. 59 (2005) 6–10.
DOI: 10.1016/j.matlet.2004.05.034
Google Scholar
[5]
H. Bafti, A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater. Design. 31(9) (2010) 4122–4129.
DOI: 10.1016/j.matdes.2010.04.038
Google Scholar
[6]
Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Processing of cellular magnesium materials, Advanced Engineering Materials, 2 (2000) 184-187.
DOI: 10.1002/(sici)1527-2648(200004)2:4<184::aid-adem184>3.0.co;2-w
Google Scholar
[7]
H.F. Cheng, F.S. Han, Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber, Scripta. Mater. 49 (2003) 583-586.
DOI: 10.1016/s1359-6462(03)00332-4
Google Scholar
[8]
H. Bafti,A. Habibolahzadeh, Compressive properties of aluminum foam produced by powder-Carbamide spacer route, Mater. Design. 52 (2013) 404–411.
DOI: 10.1016/j.matdes.2013.05.043
Google Scholar