Synthesis and Characterization of Pb(Zr0.52Ti0.48)O3 Properties via High Planetary Mill

Article Preview

Abstract:

In this work, the piezoelectric material system of Pb (Zr0.52Ti0.48)O3 ceramics were synthesized by conventional solid state via high energy planetary mill reaction. This process were chosen in order to skip the calcinations and implement a single firing process which very effective to reduce the possibility of PbO loss. The effect of sintering parameters on structural behavior of pure PZT ceramic was discussed in detail. Comprehensive studies have been carried out in order get optimum parameter for sintering process, thus improved the performance of the pure PZT ceramics. Grain size properties of Pb (Zr0.52Ti0.48)O3 ceramics increased with increasing the sintering temperature and duration. However longer sintering condition (1200 °C, 3 hours) causes excessive PbO loss which leads to presence new phases in XRD analysis, promote grain growth behavior with inhomogenous microstructure and tend to have more pores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Goldberg, R. L. and Smith, S. W.: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Vol. 41(1994), pp.761-771.

Google Scholar

[2] Miclea, C., Tanasoiu, C., Gheorghiu, A., Miclea, C. F. and Tanasoiu, V.: Journal of Materials Science Vol. 39 (2004), pp.5431-5434.

DOI: 10.1023/b:jmsc.0000039260.82430.f9

Google Scholar

[3] Yang, A., Wang, C-A., Guo, R., Huang, Y. and Nan, C-W.: Ceramic International Vol. 36 (2010), pp.549-554.

Google Scholar

[4] Cao, L. Z., Meng, Q. D., Fu, W. Y., Wang, S. F., Lei, M., Cheng, B. L., Zhou, Y. L. and Chen Z. H.: Physica B, Vol. 393 (2007), p.175–178.

Google Scholar

[5] Tripati, R., Dogra, A., Srivastava, A.K., Awana, V. P.S., Kotnala, R.K., Bhalla, G.L. and Kishan, H.: Journal of Physics D: Applied Physics Vol. 42 (2009), p.025003.

Google Scholar

[6] Brankovic, Z., Brankovic, G., Jovalekic, C., Maniette, Y., Cilense, M. and Varela, J. A.: Materials Science and Engineering A Vol. 345 (2003), pp.243-248.

Google Scholar

[7] Jin, S., Xia, H., Zhang, Y., Guo, J. and Xu, J.: Materials Letters Vol. 61 (2007), pp.1404-1407.

Google Scholar

[8] Suworiak, Z.: Molecular and Quantum Acoustics Vol. 27 (2006), pp.265-284.

Google Scholar

[9] Wu, J., Xiao, D., Wu, W., Chen, Q., Zhu, J., Yang, Z. and Wang, J.: European Ceramic Society Vol. 32 (2012), p.891–898.

Google Scholar

[10] Nigro, R. L., Toro, R. G., Malandrino, G., Fragala, I. L., Fiorenza, P., and Raineri, V.: Journal of Surface & Coatings Technology Vol. 201(2007), p.9243–9247.

DOI: 10.1016/j.surfcoat.2007.05.019

Google Scholar

[11] Amorin, H., Ricote, J., Holc, J., Kosec, M. and Alguero, M.: Journal of European Ceramic Society Vol. 28 (2008), pp.2755-2763.

Google Scholar

[12] Villegas, M., Fernandez, J. F. and Caballero, A. C.: Journal of Material Resources Vol. 14 (1999), pp.898-902.

Google Scholar

[13] Boonruang, A., Ngernchuklin, P. and Eamchotchawalit, C.: Journal of Metals, Materials and Minerals Vol. 22 (2012), pp.55-59.

Google Scholar

[14] Kong, L. B., Zhu, W. and Tan, O. K.: Materials Letters Vol. 42 (2000), p.232–239.

Google Scholar

[15] Wang, C. H., Chang, S. J. and Chang, P. C.: Materials Science and Engineering B Vol. 111 (2004), p.124–130.

Google Scholar

[16] El-Salam, F. A., Tawfik, A. and Eatah, A. I.: Ferroelectrics Vol. 65 (1985), pp.131-141.

Google Scholar

[17] Coble, R. L.: Journal of Applied Physics Vol. 56 (1985), pp.131-141.

Google Scholar

[18] Marrero, J. C., Suarez-Gomez, A., Blesa, J. S. and Calderon-Pinar, F.: Bulletin Material Science Vol. 32 (2009), p.381–386.

Google Scholar