Study on Band Gap Energy of F Doped TiO2 Nanotubes

Article Preview

Abstract:

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-238

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Xu, A. J. Du, J. Liu, J. Ng, D. D. Sun, Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water, International Journal of Hydrogen Energy, Vol. 36 (2011), p.6560.

DOI: 10.1016/j.ijhydene.2011.02.103

Google Scholar

[2] J. H. Huang, W. K. Ho, S. C. Lee Frank, Facile Synthesis of visible-light-activated F-doped TiO2 hollow spheres by ultrasonic spray pyrolysis, Science of Advanced Materials, Vol 4 (2012), p.863.

DOI: 10.1166/sam.2012.1358

Google Scholar

[3] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea M. H. Entezari, D. D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environment, Vol. 125 (2012).

DOI: 10.1016/j.apcatb.2012.05.036

Google Scholar

[4] M. H. Razali, A. F. Mohd Noor and M. Yusoff, Effect of calcination temperature on the physical properties and photocatalytic activity of TiO2 nanotubes synthesized by simple hydrothermal method, Australian Journal of Basic and Applied Sciences, Vol. 9 (2015).

Google Scholar

[5] G. Wu, J. Wang, D. F. Thomas, A. Chen, Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity, Langmuir, 24 (2008), p.3503.

DOI: 10.1021/la703098g

Google Scholar

[6] G. Cao, Y. Li, Q. Zhang, H. Wang, Synthesis and characterization of La2O3/TiO2−xFx and the visible light photocatalytic oxidation of 4-chlorophenol, Journal of Hazardous Materials, Vol. 178 (2010), p.440.

DOI: 10.1016/j.jhazmat.2010.01.101

Google Scholar

[7] S. Tosoni, D. F. Hevia, O. Diaz, F. Illas, Origin of optical excitations in fluorine-doped titania from response function theory: relevance to photocatalysis, Journals of Physical Chemistry Letters, Vol. 3 (2012), p.2269.

DOI: 10.1021/jz300870f

Google Scholar

[8] L. Yang, P. Liu, X. Li, S. Li, The photo-catalytic activities of neodymium and fluorine doped TiO2 nanoparticles, Ceramics International, Vol 38 (2012), p.4791.

DOI: 10.1016/j.ceramint.2012.02.067

Google Scholar

[9] C. Yu, Q. Fan, Y. Xie, J. Chen, Q. Shu, J. Yu, Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol, Journal of Hazardous Materials, Vol 237– 238 (2012), p.38.

DOI: 10.1016/j.jhazmat.2012.07.072

Google Scholar

[10] V. Kumar, S. K. Sharma, T.P. Sharma, V. Singh, Band gap determination in thick films from reflectance measurements, Optical Materials, Vol. 12 (1999), p.115.

DOI: 10.1016/s0925-3467(98)00052-4

Google Scholar

[11] S. Valencia, J. M. Marín, G. Restrepo, Study of the band gap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment, The Open Materials Science Journal, Vol. 4 (2010), p.9.

DOI: 10.2174/1874088x01004010009

Google Scholar

[12] Y. Wang, N. Herron: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. Vol. 95 (1991), p.525.

DOI: 10.1021/j100155a009

Google Scholar

[13] W. Ho, J. C. Yu, S. Lee, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chemical Communication, Vol. 10 (2006), p.1115.

DOI: 10.1039/b515513d

Google Scholar

[14] T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso, H. Itoh, Fluorine-doping in titanium dioxide by ion implantation technique, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 206 (2003).

DOI: 10.1016/s0168-583x(03)00735-3

Google Scholar