An Improved Technique for Chirality Assignment of SWCNTs Exploiting their (2n+m) Family Behavior

Article Preview

Abstract:

In this work, an improved technique for chirality assignment of single wall carbon nanotubes (SWCNT) is proposed which work for both isolated and bundles SWCNTs. The technique exploits the (2n+m) family pattern both in optical transitions vs diameter plot and Raman G-mode frequency vs diameter plot of SWCNTs. Using two different plots can give accurate value of the family of unknown SWCNTs that can be used to find chiral index (n, m) of unknown SWCNT unambiguously in most of the cases. Unlike existing methods, graphical comparison or pattern recognition with an existing Kataura plot is not required here. Chirality of 13 SWCNTs are assigned here using this technique. Validity of assigned chirality is cross checked from previous experimental reports. The technique is especially useful for determining chirality of isolated SWCNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-257

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Thomsen, H. Telg, J. Maultzsch and S. Reich, Chirality assignments in carbon nanotubes based on resonant Raman scattering, Phys. stat. sol. (b) 242, No. 9, p.1802–1806, (2005).

DOI: 10.1002/pssb.200461715

Google Scholar

[2] A. Jorio, A. P. Santos, H. B. Ribeiro, C. Fantini, M. Souza, et al., Quantifying carbon-nanotube species with resonance Raman scattering, Phys. Rev. B 72, 075207, (2005).

DOI: 10.1103/physrevb.72.075207

Google Scholar

[3] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus and M. A. Pimenta, Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects, Phys. Rev. B, Vol. 93, No. 14, (2004).

DOI: 10.1103/physrevlett.93.147406

Google Scholar

[4] S. Chiashi, K. Kono, D. Matsumoto, J. Shitaba, N. Homma, A. Beniya, et al., Adsorption effects on radial breathing mode of single-walled carbon nanotubes, Phys. Rev. B 91, 155415, (2015).

DOI: 10.1103/physrevb.91.155415

Google Scholar

[5] K. Liu, W. Wang, M. Wu, F. Xiao, X. Hong, S. Aloni, et al., Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes, Phys. Rev. B 83, 113404, (2011).

DOI: 10.1103/physrevb.83.113404

Google Scholar

[6] Y. Piao, J. R. Simpson, J. K. Striet, G. Ao, M. Zheng, J. A. Fagan, et al., Intensity Ratio of Resonant Raman Modes for (n, m) Enriched Semiconducting Carbon Nanotubes, ACS Nano, vol. 10 (5), p.5252–5259, (2016).

DOI: 10.1021/acsnano.6b01031

Google Scholar

[7] H. Telg, J. G. Duque, M. Staiger, X. Tu, F. Hennrich, M. M. Kappes, et al., Chiral index dependence of the G+ and G- Raman modes in semiconducting carbon nanotubes, ACS Nano, vol. 6 (1), p.904–911, (2012).

DOI: 10.1021/nn2044356

Google Scholar

[8] K. Goß, N. Peica, C. Thomsen, J. Maultzsch, C. M. Schneider, C. Meyer, Index assignment of a carbon nanotube rope using tip-enhanced Raman spectroscopy, Vol. 248, Issue 11, p.2577–2580, (2011).

DOI: 10.1002/pssb.201100161

Google Scholar

[9] R. D Rodriguez, M. Toader, S. Hermann, E. Sheremet, S. Müller, O. D. Gordan, et al., Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes, Nanoscale Res. Lett., Vol. 7 (1), p.682, (2012).

DOI: 10.1186/1556-276x-7-682

Google Scholar