Chirality Dependence of Gas Adsorption Property of Single Wall Carbon Nanotubes

Article Preview

Abstract:

In this work, effect of chirality on gas adsorption property of semiconducting single-wall carbon nanotubes (SWCNTs) is reported for the first time. First principles simulation of the interaction of three different chirality SWCNTs with different gas molecules is performed maintaining equilibrium tube–molecule distance. Results are obtained employing density functional theory, using the Atomistic toolkit simulation package (ATK-DFT). Nanotube density of states is observed to vary significantly due to interaction with different types of gases as well as for same gas if chirality of SWCNTs varies. The most significant finding is, the change in DOS near Fermi level is highest in mod 2 type semiconducting SWCNT for different gas molecules irrespective of donor or acceptor. Thus, proper selection of chirality of SWCNT is important to make nanotube based gas sensor and mod 2 types semiconducting SWCNTs should get preference over mod 1 type as a sensing element so as to get better sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-252

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang and J. T. W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors, Journal of Sensors, Vol. 2009, article 493904, (2009).

Google Scholar

[2] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Structure and Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B, Vol. 104, pp.2794-2809, (2000).

DOI: 10.1021/jp993592k

Google Scholar

[3] M. Y. Sfeir., T. Beetz, F. Wang, L. Huang, X. M. H Huang., M. Huang, J. Hone, S. O'Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, L. E. Brus, Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure, Science, Vol. 312, pp.554-556, (2006).

DOI: 10.1126/science.1124602

Google Scholar

[4] G. Chen, T. M. Paronyan, E. M. Pigos and A. R. Harutyunyan, Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination, Scientific Reports 2, no. 343, (2012).

DOI: 10.1038/srep00343

Google Scholar

[5] I. I. Kondrashov, I. V. Sokolov, P. S. Rusakov, M. G. Rybin, A. A. Barmin, R. N. Rizakhanov, E. D. Obraztsova, Electrical properties of gas sensors based on graphene and single-wall carbon nanotubes, J. Nanophoton, Vol 10, No. 1, 012522, (2016).

DOI: 10.1117/1.jnp.10.012522

Google Scholar

[6] J. Zhao, A. Buldum, J. Han and J. P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, Vol. 13, no. 2, pp.195-200, (2002).

DOI: 10.1088/0957-4484/13/2/312

Google Scholar

[7] J. G. Aguilar, I. M. García, A. B. Murcia, D. C. Amoros, Single wall carbon nanotubes loaded with Pd and NiPd nanoparticles for H2 sensing at room temperature, Carbon, Vol. 66, p.599–611, (2014).

DOI: 10.1016/j.carbon.2013.09.047

Google Scholar

[8] K. Rajavel, M. Lalitha, J. K. Radhakrishnan, L. Senthilkumar, and R. T. R. Kumar, Multiwalled Carbon Nanotube Oxygen Sensor: Enhanced Oxygen Sensitivity at Room Temperature and Mechanism of Sensing, ACS Appl. Mater. Interfaces, Vol. 7, No. 43, p.23857–23865, (2015).

DOI: 10.1021/acsami.5b04869

Google Scholar

[9] C. S. Huang, B. R. Huang, Y. H. Jang,M. S. Tsai, and C. Y. Yeh, Three-terminal CNTs gas sensor for N2 detection, Diamond and Related Materials, Vol. 14, no. 11-12, p.1872–1875, (2005).

DOI: 10.1016/j.diamond.2005.09.006

Google Scholar

[10] J. Liu and G. Li, A Remote Sensor for Detecting Methane Based on Palladium-Decorated Single wall carbon nanotube, Sensors, Vol. 13, pp.8814-8826, (2013).

DOI: 10.3390/s130708814

Google Scholar

[11] L. Q. Nguyen, P. Q. Phan, H. N. Duong, C. D. Nguyen and L. H. Nguyen, Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles, Sensors, Vol. 13, pp.1754-1762, (2013).

DOI: 10.3390/s130201754

Google Scholar

[12] W. A. Sekhaneh, H. Dahmani, Nanosized zinc oxide deposited on single wall carbon nanotubes composites for nitrogen dioxide-sensor in museums and art galleries monitoring, Mediterranean Archaeology and Archaeometry, Vol. 14, No. 1, pp.25-35, (2014).

Google Scholar

[13] S. Safari and T. G. M. van de Ven, Effect of Water Vapor Adsorption on Electrical Properties of Carbon Nanotube/Nanocrystalline Cellulose Composites, ACS Appl. Mater. Interfaces, Vol. 8, No. 14, p.9483–948, (2016).

DOI: 10.1021/acsami.6b02374

Google Scholar

[14] Atomistix ToolKit version 13. 8. 2, QuantumWise A/S (www. quantumwise. com).

Google Scholar