Surface Modification of Bacterial Cellulose Film

Article Preview

Abstract:

Bacterial cellulose (BC) is the cellulose which is produced by specific bacteria such as Acetobacter xylinum, Agrobacterium, Gluconacetobacter, Rhizobium, Achromobacter, Alcaligenes, Aerobacter, Azotobacter, Salmonella, Esherichia, and Sarcina. Surface modification of bacterial cellulose (BC) by coating with synthetic biodegradable polyester on it was reported. BC films were coated with the polymer at different concentrations in order to improve the surface structure of BC. Tear and burst indices of the BC film were increased with such modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-74

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Deinema, M.H. and Zevenhuizen, L. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation, Archiv für Mikrobiologie 1971. 78(1): pp.42-57.

DOI: 10.1007/bf00409087

Google Scholar

[2] Römling, U, Molecular biology of cellulose production in bacteria, Research in microbiology 2002. 153(4): pp.205-212.

DOI: 10.1016/s0923-2508(02)01316-5

Google Scholar

[3] Ross, P., Mayer, R., and Benziman, M, Cellulose biosynthesis and function in bacteria, Microbiological reviews 1991. 55(1): pp.35-58.

DOI: 10.1128/mr.55.1.35-58.1991

Google Scholar

[4] Sani, A. and Dahman, Y. Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods. Journal of chemical technology and biotechnology 2010. 85(2): pp.151-164.

DOI: 10.1002/jctb.2300

Google Scholar

[5] Brown, A.J. XLIII, —On an acetic ferment which forms cellulose, Journal of the Chemical Society, Transactions 1886. 49: pp.432-439.

DOI: 10.1039/ct8864900432

Google Scholar

[6] Iguchi, M., Yamanaka, S., and Budhiono, A., Bacterial cellulose—a masterpiece of nature's arts, Journal of Materials Science 2000. 35(2): pp.261-270.

Google Scholar

[7] Sun, R. -C. Detoxification and separation of lignocellulosic biomass prior to fermentation for bioethanol production by removal of lignin and hemicelluloses. BioResources 2009. 4(2): pp.452-455.

Google Scholar

[8] Park, J.K., Park, Y.H., and Jung, J. Y, Production of bacterial cellulose byGluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering 2003. 8(2): pp.83-88.

DOI: 10.1007/bf02940261

Google Scholar

[9] Nakagaito, A., Iwamoto, S., and Yano, H, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Applied Physics A 2005. 80(1): pp.93-97.

DOI: 10.1007/s00339-004-2932-3

Google Scholar

[10] Bae, S. and Shoda, M, Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnology and bioengineering 2005. 90(1): pp.20-28.

DOI: 10.1002/bit.20325

Google Scholar

[11] Dayal, M.S. and Catchmark, J. M, Mechanical and structural property analysis of bacterial cellulose composites, Carbohydrate Polymers 2016. 144: pp.447-453 DOI: 10. 1016/j. carbpol. 2016. 02. 055.

DOI: 10.1016/j.carbpol.2016.02.055

Google Scholar

[12] Shao, W., Wang, S., Liu, H., Wu, J., Zhang, R., Min, H., and Huang, M, Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances, Carbohydrate Polymers 2016. 138: pp.166-171.

DOI: 10.1016/j.carbpol.2015.11.033

Google Scholar

[13] Liu, X. and Ma, P. X, Polymeric scaffolds for bone tissue engineering, Annals of biomedical engineering 2004. 32(3): pp.477-486.

DOI: 10.1023/b:abme.0000017544.36001.8e

Google Scholar

[14] Jacobsen, S., Fritz, H., Degée, P., Dubois, P., and Jérôme, R. Polylactide (PLA)—a new way of production. Polymer Engineering & Science 1999. 39(7): pp.1311-1319.

DOI: 10.1002/pen.11518

Google Scholar

[15] Smith, R., Biodegradable polymers for industrial applications. 2005, CRC Press.

Google Scholar

[16] Shi, P., Niu, B., E, S.S., Chen, Y., and Li, Q, Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance, SURFACE & COATINGS TECHNOLOGY 2015. 262: pp.26-32.

DOI: 10.1016/j.surfcoat.2014.11.069

Google Scholar

[17] Barbaro, G., Galdi, M.R., Di Maio, L., and Incarnato, L, Effect of BOPET film surface treatments on adhesion performance of biodegradable coatings for packaging applications, European Polymer Journal 2015. 68: pp.80-89.

DOI: 10.1016/j.eurpolymj.2015.04.027

Google Scholar