Effects of Halloysite Nanotubes on the Mechanical Properties of Polysaccharide Films

Article Preview

Abstract:

Halloysite nanotubes (HNT) are good reinforcing fillers because of many traits that allow high processability and versatile active agents loading. Incorporation of HNT into polymer matrices, especially in natural polymers, is still yet to be explored. This paper reports on the effect of inclusion of nanotube clay towards the mechanical properties of polysaccharide films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-78

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Pasbakhsh, R. T. De Silva and V. Vahedi, The Role of Halloysite's Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. Vol. 8 (2014), p.1363–1366.

Google Scholar

[2] R. Kamble, M. Ghag, S. Gaikawad and B. K. Panda, Halloysite Nanotubes and Applications: A Review, J. Adv. Sci. Res. Vol. 3 (2012), p.25–29.

Google Scholar

[3] D. Rawtani and Y. K. Agrawal, Multifarious Applications of Halloysite Nanotubes: a Review. Rev, Adv. Mater. Sci. Vol. 30 (2012), p.282–295.

Google Scholar

[4] F. Chiriaco, F. Conversano, E. A. Sbenaglia, S. Casciaro, S. Leporatti and A. Lay-Ekuakille, Cytotoxicity Measurements of Halloysite Nanotubes for Nanomedicine Applications, IEEE MeMeA 2014 - IEEE Int. Symp. Med. Meas. Appl. Proc. (2014).

DOI: 10.1109/memea.2014.6860126

Google Scholar

[5] V. Vergaro, E. Abdullayev, Y. M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi and S. Leporatti, Cytocompatibility and Uptake of Halloysite Clay Nanotubes, Biomacromolecules Vol. 11 (2010), p.820–826.

DOI: 10.1021/bm9014446

Google Scholar

[6] J. Cervini-Silva, A. Nieto-Camacho, E. Palacios, J. A. Montoya, V. Gomez-Vidales and M. T. Ramirez-Apan, Anti-inflammatory and Anti-Bacterial Activity, and Cytotoxocity of Halloysite Surfaces, Colloids Surfaces B Biointerfaces Vol. 111 (2013).

DOI: 10.1016/j.colsurfb.2013.06.056

Google Scholar

[7] M. Du, B. Guo and D. Jia, Newly Emerging Applications of Halloysite Nanotubes: A Review. Polym, Int. Vol. 59 (2010), p.574–582.

DOI: 10.1002/pi.2754

Google Scholar

[8] Y. -F. Shi, Z. Tian, Y. Zhang, H. -B. Shen and N. -Q. Jia, Functionalized Halloysite Nanotube-based Carrier for Intracellular Delivery of Antisense Oligonucleotides, Nanoscale Res. Lett. Vol. 6 (2011), p.608.

DOI: 10.1186/1556-276x-6-608

Google Scholar

[9] S. Casciaro, G. Soloperto, F. Conversano, E. Casciaro, A. Greco, S. Leporatti, A. Lay-Ekuakille and G. Gigli, Automatic Image Detection of Halloysite Clay Nanotubes as a Future Ultrasound Theranostic Agent for Tumoral Cell Targeting and Treatment, Conf. Rec. - IEEE Instrum. Meas. Technol. Conf. (2014).

DOI: 10.1109/i2mtc.2014.6860878

Google Scholar

[10] A. D. Hughes, J. Mattison, L. T. Western, J. D. Powderly, B. T. Greene and M. R. King, Clin, Microtube device for Selectin-Mediated Capture of Viable Circulating Tumor Cells from Blood, Chem. Vol. 58 (2012), p.846–853.

DOI: 10.1373/clinchem.2011.176669

Google Scholar

[11] E. Abdullayev and Y. Lvov, Halloysite Clay Nanotubes as a Ceramic Skeleton, for Functional Biopolymmer Composites with Sustained Drug Release, J. Mater. Chem. B Vol. 1 (2013), p.2894–2903.

DOI: 10.1039/c3tb20059k

Google Scholar

[12] Q. Chen, Y. Zhao, W. Wu, T. Xu and H. Fong, Fabrication and Evaluation of Bis-GMA/TEGDMA Dental Resins/ Composite Containing Halloysite Nanotubes, Dent Mater. Vol. 28 (2012), p.1071–9.

DOI: 10.1016/j.dental.2012.06.007

Google Scholar

[13] Y. Lvov, W. Wang, L. Zhang and R. Fakhrullin, Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds, Adv. Mater. Vol. 28 (2016), p.1227–1250.

DOI: 10.1002/adma.201502341

Google Scholar

[14] P. Yuan, D. Tan and F. Annabi-Bergaya, Properties and Applications of Halloysite Nanotubes: Recent Research Advances and Future Prospects, Appl. Clay Sci. Vol. 112–113 (2015), p.75–93.

DOI: 10.1016/j.clay.2015.05.001

Google Scholar

[15] M. J. Saif and H. M. Asif, Escalating Applications of Halloysite Nanotubes, J. Chil. Chem. Soc. Vol. 60 (2015), p.949–2953.

DOI: 10.4067/s0717-97072015000200019

Google Scholar

[16] M. Liu, C. Wu, Y. Jiao, S. Xiong and C. Zhou, Chitosan-Halloysite Nanotubes Nanocomposite Scaffolds for Tissue Engineering, J. Mater. Chem. B Vol. 1 (2013), p. (2078).

DOI: 10.1039/c3tb20084a

Google Scholar

[17] K. -S. Lee and Y. -W. Chang, Thermal, Mechanical, and Rheological Properties of Poly(ɛ-caprolactone)/Halloysite Nanotube Nanocomposites, J. Appl. Polym. Sci. Vol. 128 (2013), p.2807–2816.

DOI: 10.1002/app.38457

Google Scholar

[18] Y. Chen, L. M. Geever, J. A. Kilion, J. G. Lyons, C. L. Higginbotham and D. M. Devine, Halloysite Nanotube Reinforced Polylactic Acid Composite, Polym. Compos. (2015).

DOI: 10.1002/pc.23794

Google Scholar

[19] Y. Lin, K. M. Ng, C. -M. Chan, G. Sun and J. Wu, High-impact Polystyrene/Halloysite Nanocomposites Prepared by Emulsion Polymerization Using Sodium Dedocyl sulfate as Surfactant, J. Colloid Interface Sci. Vol. 358 (2011), p.423–429.

DOI: 10.1016/j.jcis.2011.03.009

Google Scholar

[20] V. D. Prajapati, P. M. Maheriya, G. K. Jani and H. K, Solanki: Carrageenan: A Natural Seaweed Polysaccharide and Its Applications. Carbohydr, Polym. Vol. 105 (2014), p.97–112.

DOI: 10.1016/j.carbpol.2014.01.067

Google Scholar

[21] L. Yu, K. Dean and L. Li, Polymer Blends and Composites from Renewable Resources. Prog, Polym. Sci. Vol. 31 (2006), p.576–602.

DOI: 10.1016/j.progpolymsci.2006.03.002

Google Scholar