[1]
F. Abe, E.C. Santos, Y. Kitamura, K. Osada, M. Shiomi, Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217 (1) (2003).
DOI: 10.1243/095440603762554668
Google Scholar
[2]
H. Meier, C. Haberland, Experimental studies on selective laser melting of metallic parts, Materialwiss. Werkst. 39. 9 (2008) 665-670.
DOI: 10.1002/mawe.200800327
Google Scholar
[3]
J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal 11. 1 (2005) 26-36.
DOI: 10.1108/13552540510573365
Google Scholar
[4]
S. Kumar, Selective laser sintering: A qualitative and objective approach, Journal of Materials 55. 10 (2003) 43-47.
Google Scholar
[5]
B. Vrancken, L. Thijs, J.P. Kruth, J. Humbeeck, J, Heat treatment of Ti-6Al-4V produced by selective laser melting: Microstructure and mechanical properties, Journal of Alloys and Compounds 541 (2012) 177-185.
DOI: 10.1016/j.jallcom.2012.07.022
Google Scholar
[6]
A. Bača, R. Konečná, G. Nicoletto, L. Kunz, Effect of surface roughness on the fatigue life of laser additive manufactured Ti6Al4V alloy, Manufacturing Technology 15. 4 (2015) 498-492.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/4/498
Google Scholar
[7]
M. Simonelli, Y.Y. Tse, C. Tuck, Microstructure of Ti6Al4V produced by selective laser melting, Journal of Physics Conference Series 07/2012 371. 1 (2012) 480-491.
DOI: 10.1088/1742-6596/371/1/012084
Google Scholar
[8]
C.R. Knowles, T.H. Becker, R.B. Tait, Microstructure and mechanical properties of direct metal laser sintered Ti-6Al-4V, S. Afr. J. Ind. Eng. 26. 1 (2015) 1-10.
Google Scholar
[9]
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue 48. 1 (2013).
DOI: 10.1016/j.ijfatigue.2012.11.011
Google Scholar
[10]
A. Bača, R. Konečná, G. Nicoletto and L. Kunz, Influence of build direction on the fatigue behaviour of Ti6Al4V alloy produced by direct metal laser sintering, Materials Today: Proceedings 3 (2016) 921-924.
DOI: 10.1016/j.matpr.2016.03.021
Google Scholar
[11]
A. Bača, R. Konečná, G. Nicoletto, Microstructure and fatigue behavior of DMLS Ti6Al4V alloy, submitted to Trans Tech Publications Ltd in the periodical Materials Science Forum (2016).
DOI: 10.4028/www.scientific.net/msf.891.317
Google Scholar
[12]
M. Simonelli, Y.Y. Tse, C. Tuck, Further understanding of Ti6Al4Vselectiv laser melting using texture analysis, Proceedings of 23rd Annual International Solid Freeform Fabrication Symposium (2012) 480-491.
Google Scholar