YBCO Bulk Superconductors with Sm Addition

Article Preview

Abstract:

The influence of Sm addition on the microstructure and superconducting properties of Y-Ba-Cu-O (YBCO) bulk superconductors has been studied. Precursor powders YBa2Cu3O7-δ (Y-123), Y2O3 and CeO2 were enriched with different amounts of SmBa2Cu3Oy (Sm-123) or Sm2O3 powders with the aim to increase critical current density, Jc, by introducing additional pinning centers. YBCO bulk superconductors with SmBa2Cu3Oy (Y123-Sm) or Sm2O3 (Y123-SmO) powder addition were prepared by the optimized top seeded melt growth process in the form of single grains. Microstructure analysis revealed that Sm2O3 addition leads to a higher amount of smaller Y2BaCuO5 (Y-211) particles, what is related to high critical current densities (Jc ~ 7 x 104 A/cm2) of the YBCO samples with Sm2O3 addition in low magnetic fields. The effect of Sm addition in the form of SmBa2Cu3Oy as well as Sm2O3 powder on Y2BaCuO5 particle size, critical temperature, Tc, and critical current density, Jc, is reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

483-488

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Durrell, A.R. Dennis, J. Jaroszynski, M.D. Ainslie, K.G.B. Palmer, et al., Supercond. Sci. Technol. 27 (2014) 082001.

Google Scholar

[2] D. Kenfaui, P.F. Sibeud, E. Louradour, X. Chaud, J.G. Noudem, Adv. Funct. Mater. 24 (2014) 3996-4004.

DOI: 10.1002/adfm.201304083

Google Scholar

[3] F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich and P. Schirrmeister, Supercond. Sci. Technol. 25 (2012) 014007.

DOI: 10.1088/0953-2048/25/1/014007

Google Scholar

[4] M. Murakami, M. Morita, K. Doi and K. Miyamoto, Jpn. J. Appl. Phys. 28 (1989) 1189-1194.

Google Scholar

[5] M. Murakami, K. Yamaguchi, H. Fujimoto, N. Nakamura, T. Taguchi, N. Koshizuka, S. Tanaka, Cryogenics 32 (1992) 930-935.

DOI: 10.1016/0011-2275(92)90002-r

Google Scholar

[6] N. Ogawa, I. Hirabayashi and S. Tanaka, Physica C 177 (1991) 101-105.

Google Scholar

[7] C.J. Kim, S.H. Lai and P.J. McGinn, Mater. Lett. 19 (1994) 185-191.

Google Scholar

[8] V. Antal, M. Kaňuchová, M. Šefčiková, J. Kováč, P. Diko, M. Eisterer, N. Hörhager, M. Zehetmayer, H.W. Weber and X. Chaud, Supercond. Sci. Technol. 22 (2009) 105001.

DOI: 10.1088/0953-2048/22/10/105001

Google Scholar

[9] K. Iida, N. Hari Babu and D. A. Cardwell, Supercond. Sci. Technol. 20 (2007) 1065.

Google Scholar

[10] G.Z. Li, L. Dong, X.Y. Deng, J. Am. Ceram. Soc. 99 (2016) 388-391.

Google Scholar

[11] L. Shlyk, G. Krabess, G. Fuchs, K. Nenkov, P. Verges, Physica C 392-396 (2003) 540.

Google Scholar

[12] S. Jin, T. H. Tiefel, G. W. Kammlott, R. A. Fastnacht and J. E. Graebner, Physica C 173 (1991) 75.

DOI: 10.1016/0921-4534(91)90795-z

Google Scholar

[13] C. P. Bean, Phys. Rev. Lett. 8 (1962) 250-253.

Google Scholar

[14] D. Volochová, P. Diko, M. Radušovská, V. Antal, S. Piovarči, K. Zmorayová, M. Šefčiková, J. of Cryst. Growth 353 (2012) 31-34.

DOI: 10.1016/j.jcrysgro.2012.04.029

Google Scholar

[15] D. Volochová, P. Diko, V. Antal, M. Radušovská, S. Piovarči, J. of Cryst. Growth 356 (2012) 75-80.

DOI: 10.1016/j.jcrysgro.2012.07.021

Google Scholar

[16] W. Wang, B. Peng, Y. Chen, L. Guo, X. Cui, Q. Rao and X. Yao, Cryst. Growth Des. 14, (2014) 2302-2306.

Google Scholar

[17] A. Endo, H.S. Chauchan, T. Egi and Y. Shiohara, J. Mater. Res. 11 (1996) 795-803.

Google Scholar