Crack Propagation in Metallic Glass Ribbon as a Function of the Position of Stress Concentrators

Article Preview

Abstract:

An amorphous metallic ribbon of Fe40Ni40B20 was used for in-situ observation of the crack propagation and shear band formation during tensile tests. Prior to the tensile tests, two holes (with different positions with respect to the tensile axis) were made by laser ablation as stress concentrators. The nucleation and propagation of shear bands on the ribbon surface during tensile tests were analysed with scanning electron microscopy (SEM). At room temperature inhomogeneous plastic deformation of amorphous alloy occurs via the development of primary and secondary shear bands. The influence of the different loading geometry on the topology of shear bands and crack propagation was studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

494-499

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306. DOI: 10. 1016/S1359-6454(99)00300-6.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[2] A.S. Argon, J. Megusar, N.J. Grant, Shear band induced dilations in metallic glasses, Scripta metall. 19 (1985) 591-596. DOI: 10. 1016/0036-9748(85)90343-6.

DOI: 10.1016/0036-9748(85)90343-6

Google Scholar

[3] F. Spaepen, A.I. Taub, Flow and fracture, Amorphous Metallic Alloys, London: Butterworths (1983) 231-356.

DOI: 10.1016/b978-0-408-11030-3.50018-2

Google Scholar

[4] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica 25 (1977) 407-415. DOI: 10. 1016/0001-6160(77)90232-2.

DOI: 10.1016/0001-6160(77)90232-2

Google Scholar

[5] H. Bei, S. Xie, E.P. George, Softening caused by profuse shear banding in a bulk metallic glass, Phys. Rev. Letters. 96 (2006) 105503. DOI: 10. 1103/PhysRevLett. 96. 105503.

DOI: 10.1103/physrevlett.96.105503

Google Scholar

[6] V. Ocelík, P. Diko, V.Z. Bengus, E.D. Tabachnikova, E.B. Koroľkova, K. Csach, V. Hajko, P. Duhaj, Fracture Toughness of Transition Metals-Base Metallic Glasses at Low Temperatures, Kovové Materiály- Metallic materials 25 (1987) 423-434.

DOI: 10.1007/bf01161486

Google Scholar

[7] V. Ocelík, V.Z. Bengus, E.B. Koroľkova, K. Csach, J. Miškuf, P. Duhaj, Low temperature and strain rate dependence of fracture stress and fracture toughness on thin Fe40Ni40B20 amorphous ribbon, J. Mat. Sci. 26 (1991).

DOI: 10.1007/bf02402663

Google Scholar

[8] T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension, Scr. Mater. 46 (2002) 43-47. DOI: 10. 1016/S1359-6462(01)01193-9.

DOI: 10.1016/s1359-6462(01)01193-9

Google Scholar

[9] K.M. Flores, R.H. Dauskardt, Fracture and deformation of bulk metallic glasses and their composites, Intermetallics 12 (2004) 1025-1029. DOI: 10. 1016/j. intermet. 2004. 05. 004.

DOI: 10.1016/j.intermet.2004.05.004

Google Scholar