Surface Modification of Aramid Fiber III by the Atmospheric-Pressure Air Plasma Treatment

Article Preview

Abstract:

Aramid fiber III has been treated by plasma treatment on different atmosphere gas to enhance the adhesive force between Aramid fiber III and epoxy matrix. The results of contact angle and SEM indicate that the obvious corrosion appear in the surface of aramid fiber III after plasma treatment. The yarn pull-out method was used to evaluate the effect of surface modification. The contact angle of original aramid fiber III is 65.9 o, and after treated the contact angle is declined to 62.2 o. The evaluation results show the tensile strength and NOL ILSS of treated Aramid fiber III/epoxy composite increased by about 10%. In summary, the effect of plasma treatment is obvious and has potential industry application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-322

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Y. Sun, Q. Liang, H. J. Chi, Y. J. Zhang, Y. Shi, D. N. Fang, and F. X. Li, The Application of Gas Plasma Technologies in Surface Modification of Aramid Fiber, Fibers. Polym. 15 (2014) 1-7.

DOI: 10.1007/s12221-014-0001-x

Google Scholar

[2] Y.Y. Chu, X. G. Chen, D. W. Sheel and J. L. Hodgkinson, Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition, Text. Resea. J. 84(2014) 1288–1297.

DOI: 10.1177/0040517513515311

Google Scholar

[3] Rodriguez-Uicab. O, Aviles. F, Gonzalez-Chi. P. I, Canche-Escamilla. G et al, Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers, Appl. Surf Sci. 385 (2016) 379-390.

DOI: 10.1016/j.apsusc.2016.05.037

Google Scholar

[4] S. Li, K.Q. Han, H.P. Rong, X.Z. Li, M.H. Yu, Surface Modification of Aramid Fibers via Ammonia-Plasma Treatment, J. Appl. Polym. Sci. 131 (2014) 40250.

DOI: 10.1002/app.40250

Google Scholar

[5] Aranganathan. N, Mahale. V, Bijwe. J, Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests, Wear. 354 (2016) 69-77.

DOI: 10.1016/j.wear.2016.03.002

Google Scholar

[6] D. Yu, S.P. Mu, L.L. Liu, W. Wang, Preparation of electroless silver plating on aramid fiber with good conductivity and adhesion strength, Coll Surf A-Phys Eng Aspe. 483 (2015) 53-59.

DOI: 10.1016/j.colsurfa.2015.07.021

Google Scholar

[7] C.X. Jia, P. Chen, Q. Wang, J. Wang, X.H. Xiong, K.M. Ma, The Effect of Atmospheric-Pressure Air Plasma, Discharge Power on Adhesive Properties of Aramid Fibers, Polym. Comp. 37 (2016) 620-626.

DOI: 10.1002/pc.23219

Google Scholar

[8] Z. Sun, S. S. Shi, X. Z. Hu, X. Guo et al. Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology. Compos. Part B: Engi. 77 (2015) 38-45.

DOI: 10.1016/j.compositesb.2015.03.010

Google Scholar

[9] MA Karim Biswas, MA Shayed, RD Hund and Ch Cherif, Surface modification of Twaron aramid fiber by the atmospheric air plasma technique, Text Resea. J. 83 (2012) 406–417.

DOI: 10.1177/0040517512464291

Google Scholar

[10] P. Cai, Z. L. Li, T. M. Wang and Q. H. Wang, Effect of aspect ratios of aramid fiber on mechanical and tribological behaviors of friction materials, Tribo. Inter. 92 (2015) 109-116.

DOI: 10.1016/j.triboint.2015.05.024

Google Scholar