FTIR and UV-Visible Absorbance Studies of Hydrothermally Grown ZnO Coated with Polyvinylpyrrolidone

Article Preview

Abstract:

Hydrothermally grown hexagonal wurtzite ZnO microrods coated with polyvinylpyrrolidone (PVP) via an ex-situ method, was successfully synthesized without using complex procedure or experimental setup. FTIR results confirm the presence of different functional groups of PVP at the ZnO surface and the chemical interaction of ZnO with the C=O ligand of the PVP molecule. The presence of PVP molecules prevents the absorption of atmospheric CO2 by the Zn2+ ions since PVP chemically interacts with ZnO by attaching to the exposed cations. The coating concentration doesn’t induce a frequency shift in the vibrations of the PVP functional groups. The ZnO microrods possess good optical quality as indicated by the high UV absorption and pronounced excitonic peak at room temperature, even after coating with higher PVP concentrations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Xie, D. Li, D. Yang, T. Sekiguchi and M. Jiang: Nanotechnology Vol. 17 (2006), p.2789.

Google Scholar

[2] Y.H. Leung, X.Y. Chen, A.M.C. Ng, M.Y. Guo, F.Z. Liu, A.B. Djurišić, W.K. Chan, X.Q. Shi and M.A. Van Hove: Appl. Surf. Sci. Vol. 271 (2013), p.202.

Google Scholar

[3] K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding and W.K. Ge: J. Phys. Chem. B Vol. 110 (2006), p.20865.

DOI: 10.1021/jp063239w

Google Scholar

[4] S.F. Wei, J.S. Lian and Q. Jiang: Appl. Surf. Sci. Vol. 255 (2009), p.6978.

Google Scholar

[5] C.X. Kan, J.J. Zhu and X.G. Zhu: J. Phys. D: Appl. Phys. Vol. 41 (2008), 155304.

Google Scholar

[6] L. Guo and S. Yang: Appl. Phys. Lett. Vol. 76 (2000), p.2901.

Google Scholar

[7] Y.L. Liu, Y.C. Liu, W. Feng, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, D.J. Wang and Q.D. Zhao: J. Chem. Phys. Vol. 122 (2005), 174703.

Google Scholar

[8] B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg and S.H. Chaki: J. Nano- Electron. Phys. Vol. 5 (2013), 04077.

Google Scholar

[9] R. Majithia, J. Speich and K.E. Meissner: Materials Vol. 6 (2013), p.2497.

Google Scholar

[10] J. Dai, C. Xu, M. Gao, Z. Liu, Z. Shi, X. Xu, J. Guo and Z. Li: CrystEngComm Vol. 14 (2012), p.2180.

Google Scholar

[11] A.B. Santos-Putungan, B.G. Singidas and R.V. Sarmago: HCTL Open IJTIR Vol. 11 (2014), e-ISSN: 2321-1814, ISBN (Print): 978-1-62951-780-3.

Google Scholar

[12] W. Feng, H. Tao, Yan Liu and Yichun Liu: J. Mater. Sci. Technol. Vol. 22 (2006), p.230.

Google Scholar

[13] X. Sui, Yichun Liu, C. Shao, Yuxue Liu and C. Xu: Chem. Phys. Lett. Vol. 424 (2006), p.340.

Google Scholar

[14] T. Du and O.J. Ilegbusi: J. Mater. Sci. Vol. 39 (2004), p.6105.

Google Scholar

[15] D.M. Fernandes, R. Silva, A.A. Winkler Hechenleitner, E. Radovanovic, M.A. Custódio Melo and E.A. Gómez Pineda: Mater. Chem. Phys. Vol. 115 (2009), p.110.

Google Scholar

[16] G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer and R.T. Williams: phys. stat. sol. (c) Vol. 3 (2006), p.3577.

Google Scholar

[17] M. Jay Chithra, M. Sathya and K. Pushpanathan: Acta Metall. Sin. (Engl. Lett. ) Vol. 28 (2015), p.394.

DOI: 10.1007/s40195-015-0218-8

Google Scholar

[18] C. Pholnak, C. Sirisathikul, S. Suwanboon and D.J. Harding: Mat. Res. Vol. 17 (2014), p.405.

Google Scholar

[19] M. Jukić, I. Sviben, Z. Zorić and S. Milardović: Croat. Chem. Acta Vol. 85 (2012), p.269.

DOI: 10.5562/cca1919

Google Scholar

[20] A. Moulahi and F. Sediri: Ceram. Int. Vol. 40 (2014), p.943.

Google Scholar

[21] E.G. Goh, X. Xu and P.G. McCornick: Scr. Mater. Vol. 78-79 (2014), p.49.

Google Scholar

[22] T. Gutul, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco and P. Vlazan: Beilstein J. Nanotechnol. Vol. 5(2014), p.402.

DOI: 10.3762/bjnano.5.47

Google Scholar