[1]
M. Eskandari, M.A. Mohtadi-Bonab, J.A. Szpunar, Evolution of the microstructure and texture of X70 pipeline steel during cold-rolling and annealing treatments, Materials & Design, 90 (15) (2016) 618-627.
DOI: 10.1016/j.matdes.2015.11.015
Google Scholar
[2]
Qingyun Sha, Dahang Li, Microstructure, mechanical prop erties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content, Materials Science and Engineering A, 585 (15) (2013) 214-221.
DOI: 10.1016/j.msea.2013.07.055
Google Scholar
[3]
Ji-Ming Zhang, Qiang Chi, Hong-Yuan Chen, Hai-Tao Wang, Influence of thermal aging on microstructure and mechanical behavior of X100 high deformability line pipe. Material Engineering and Mechanical Engineering, (2016) 524-531.
DOI: 10.1142/9789814759687_0060
Google Scholar
[4]
Ji-ming ZHANG, Wei-hua SUN, Hao SUN, Mechanical Properties and Microstructure of X120 Grade High Strength Pipeline Steel, Journal of Iron and Steel Research, International, 17 (10) (2010) 63-67.
DOI: 10.1016/s1006-706x(10)60185-9
Google Scholar
[5]
Jang-Bog Ju, Woo-sik Kim, Jae-il Jang, Variations in DBTT and CTOD within weld heat-affected zone of API X65 pipeline steel, Materials Science and Engineering A, 546(2012)258-262.
DOI: 10.1016/j.msea.2012.03.062
Google Scholar
[6]
J.M. Zhang, Q. Chi, L.K. Ji, C.Y. Huo, H.Y. Chen, Mechanical properties and microstructure of welding joint for high strength-toughness line pipe, The 26th International Ocean and Polar Engineering Conference, (2016).
Google Scholar
[7]
N.V. Bangaru, A.K. Sachdev, Influence of Cooling Rate on the Microstructure and Retained Austenite in an Intercritically Annealed Vanadium Containing HSLA Steel, Metallurgical Transactions A, 13A (1982) 1899-(1906).
DOI: 10.1007/bf02645933
Google Scholar
[8]
Nazmul Huda, Abdelbaset R.H. Midawi, James Gianetto, Robert Lazor, Adrian P. Gerlich, Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels, Materials Science and Engineering A, 662 (2016) 481-491.
DOI: 10.1016/j.msea.2016.03.095
Google Scholar
[9]
S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, S.G. Jansto, Microstructure and high strength–toughness combination of a new 700 MPa Nb-microalloyed pipeline steel, Materials Science and Engineering A, 478 (2008) 26-37.
DOI: 10.1016/j.msea.2007.06.003
Google Scholar
[10]
Yong Zhong, Furen Xiao, Jingwu Zhang, Yiyin Shan, Wei Wang, Ke Yang, In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipelinesteel, Acta Materialia, 54 (2006) 435-443.
DOI: 10.1016/j.actamat.2005.09.015
Google Scholar
[11]
Chunming Wang, Xingfang Wu, Jie Liu, Ning'an Xu, Transmission electron microscopy of marensite/austenite island in pipeline steel X70, Materials Science and Engineering A, 438-440 (2006) 267-271.
DOI: 10.1016/j.msea.2006.02.118
Google Scholar
[12]
J.W. Chistian, S. Mahajan, Deformation twinning, Progress in Materials Science, 39 (1995) 1-157.
Google Scholar
[13]
K. Poorhaydari, B.M. Patchett, D.G. Ivey, Transformation twins in the weld HAZ of a low-carbon high-strength microalloyed steel, Materials Science and Engineering A, 435-436(2006)371-382.
DOI: 10.1016/j.msea.2006.07.055
Google Scholar
[14]
M.J. Szczerba, S. Kopacz, M.S. Szczerba, Experimental studies on detwinning of face-centered cubic deformation twins, Acta Materialia, 104(2016)52-61.
DOI: 10.1016/j.actamat.2015.11.025
Google Scholar
[15]
Pan Zhang, Yulin Chen, Wenlong Xiao, Dehai Ping, Xinqing Zhao, Twin structure of the lath martensite in low carbon steel, Progress in Natural Science: Materials International, 26 (2016) 169-172.
DOI: 10.1016/j.pnsc.2016.03.004
Google Scholar
[16]
Y. You, CJ Shang, W.J. Nie, S. Subramanian, Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content, Materials Science & Engineering A 558 (2012) 692-701.
DOI: 10.1016/j.msea.2012.08.077
Google Scholar
[17]
Simone Schreijag, Daniel Kaufmann, Moritz Wenk, Oliver Kraft, Reiner Monig, Size and microstructural effects in the mechanical response of a-Fe and low alloyed steel, Acta Materialia, 97 (2015) 94-104.
DOI: 10.1016/j.actamat.2015.06.038
Google Scholar
[18]
Z.W. Shan, RAJA K. Mishra, S.A. Syed Asif, Oden L. Warren, Andrew M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nature Materials, 7 (2008)115-119.
DOI: 10.1038/nmat2085
Google Scholar
[19]
W. D Nix, Yielding and strain hardening of thin metal films on substrates, Scr Mater, 39 (1998) 545-554.
DOI: 10.1016/s1359-6462(98)00195-x
Google Scholar
[20]
Q. Huang, D.L. Y, Bo. Xu,W.T. Hu, Y.M. Ma, Y.Z. Wang, Nanotwinned diamond with unprecedented hardness and stability, nature, 2014, 510(7504): 250-253.
DOI: 10.1038/nature13381
Google Scholar
[21]
K. Lu, Tabilizing nanostructures in metals using grain and twin boundary architectures, Nature Reviews Materials, 1, 16019 (2016)1-13.
Google Scholar