Microstructural Evolution after Cold Forming and Recrystallization Annealing in Commercially Pure Titanium Sheet

Article Preview

Abstract:

Different cold rolling and recrystallization annealing of commercially pure titanium (CP-Ti) sheet was conducted. Microstructural evolution in commercially pure titanium sheet after cold forming and recrystallization annealing were investigated. Cold forming properties using a microstructural analysis, Vickers microhardness and erichsen value measurements were performed. Alpha grain sizes of processing 1 and 2 are 38.67μm and 40.12μm, respectively. Erichsen values of the specimens of processing 2 reaches the high value. This is attributed to recrystallization annealing. Equiaxed alpha grains are formed from the elongated grains and cold forming properties of CP-Ti were improved. The effect of the first recrystallization annealing was remained. Forming properties were a moderate value for processing 1 due to the presence of equiaxed grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Yi, T. Hama, K. Akihiro, F. Hitoshi, T. Hirohiko. Mater. Sci. Eng., A 655 (2016) 70-85.

Google Scholar

[2] W. T. Wang, M. Y. Fan, J. L. Li, J. Tao. J. Mater. Eng. Perform. 25, 3 (2016) 774-780.

Google Scholar

[3] P. Luo, Q. D. Hu, X. L. Wu. Metall. Mater. Trans. A 47, 5 (2016) 1922-(1928).

Google Scholar

[4] B. Meng, M. W. Fu, S. Q. Shi. Mater. Des. 89 (2016)1283-1293.

Google Scholar

[5] S. K. Sahoo, S. Panda, R. K. Sabat. Philos. Mag. 95, 10 (2015) 1105-1124.

Google Scholar

[6] L. C. Tsao, H. Y. Wu, J. C. Leong, C. J. Fang. Mater. Des. 34 (2012) 179-184.

Google Scholar

[7] L. S. Vitor, F. Maurizio, K. Megumi, G. L. Terence. J. Mater. Sci. 47, 22 (2012) 7870-7876.

Google Scholar

[8] R. J. Contieri, M. Zanotello, R. Caram. Mater. Sci. Eng., A 527, 16-17 (2010) 3994-4000.

Google Scholar

[9] S. P. Gentry, K. Thornton. 36th Risø International Symposium on Materials Science. 89, 1 (2015) 1.

Google Scholar

[10] Z. Pavel, V. Kristína, H. Branislav. Mater. Sci. Eng., A 651 (2016) 886-892.

Google Scholar

[11] Z. Li, L. Fu, B. Fu, A. Shan. Mater. Sci. Eng., A 558 (2012) 309-318.

Google Scholar

[12] J. L. Sun, P. W. Trimby, F. K. Yan, X. Z. Liao, N. R. Tao, J. T. Wang. Acta Mater. 79 (2014) 47-58.

Google Scholar

[13] H. W. Li, X. L. Zhang, J. Y. Chen, J. S. Li. Trans. Nonferrous Met. Soc. China. 23, 1 (2013) 23-31.

Google Scholar

[14] H. T. Jiang, J. X. Liu, Z. L. Mi, A. M. Zhao, Y. J. Bi. International Journal of Minerals, Metallurgy and Materials. 19, 6 (2012) 530-535.

Google Scholar

[15] M. H. Shipton, W. T. Roberts. Mater. Sci. Technol. 7 (1991) 537-540.

Google Scholar