Electronic Structures of Vacancy Defective Chiral (6,2) SiC Nanotubes

Article Preview

Abstract:

Vacancy defects are common defects formed in the syntheses of silicon carbide nanotubes (SiCNTs) and seriously impact the electronic structures of the nanotubes. With first-principle calculations based on density functional theory (DFT), vacancy defective (6,2) SiCNTs are studied. Vacancies form a pair of fivefold and ninefold rings. Carbon vacancy introduces an occupied defect level near the top of the valence band and an unoccupied level in the conduction band. Three defect levels are found in the band gap of the SiCNT with a silicon vacancy. These results are helpful for investigations on SiCNT devices and sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 345 (1991) 56.

Google Scholar

[2] J.Y. Zhou, M. Zhou, Z.Y. Chen, Z.X. Zhang, C.C. Chen, R.S. Li, X.P. Gao, E.Q., SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates, Surf. Coat. Technol. 203(2009) 3219-3223.

DOI: 10.1016/j.surfcoat.2009.03.055

Google Scholar

[3] Z.F. Xie, D.L. Tao, J.Q. Wang, Synthesis of silicon carbide nanotubes by chemical vapor deposition, J. Nanosci. Nanotechnol. 7 (2007) 645 -652.

DOI: 10.1166/jnn.2007.142

Google Scholar

[4] L.Z. Pei, Y.H. Tang, Y.W. Chen, C. Guo, X.X. Li, Y. Yuan, Y. Zhang, Preparation of silicon carbide nanotubes by hydrothermal method, J. Appl. Phys. 99 (2006) 114306.

Google Scholar

[5] G. Cubiotti, Y. Kucherenko, A. Yaresko, A. Perlov, and V. Antonov, The effect of the atomic relaxation around defects on the electronic structure and optical properties of beta-SiC, J. Phys.: Condens. Matter 11 (1999), 2265.

DOI: 10.1088/0953-8984/11/10/013

Google Scholar

[6] G. Cubiotti, Y. Kucherenko, A. Yaresko, A. Perlov, and V. Antonov, Electronic states and optical properties of beta-SiC containing paired antisite defects, J. Electron Spectrosc. Relat. Phenom. 88(1998), 957.

DOI: 10.1016/s0368-2048(97)00186-2

Google Scholar

[7] R. Aavikko, K. Saarinen, F. Tuomisto, B. Magnusson, N. T. Son, and E. Janzen, Clustering of vacancy defects in high-purity semi-insulating SiC, Phys. Rev. B 75 (2007), 8.

DOI: 10.1103/physrevb.75.085208

Google Scholar

[8] R. Moradian, S. Azadi, and S. V. Farahani, Structure and electronic properties of native and defected gallium nitride nanotubes, Physics Letters A 372 (2008) 6935-6939.

DOI: 10.1016/j.physleta.2008.09.044

Google Scholar

[9] D. Orlikowski, M. B. Nardelli, J. Bernholc and C. Roland, Theoretical STM signatures and transport properties of native defects in carbon nanotubes, Physical Review B 61(2000)14194-14203.

DOI: 10.1103/physrevb.61.14194

Google Scholar

[10] R.J. Baierle, P. Piquini, L.P. Neves, R.H. Miwa, Ab initio study of native defects in SiC nanotubes, Phys. Rev. B 74 (2006) 155425.

DOI: 10.1103/physrevb.74.155425

Google Scholar

[11] E. C. Anota,G. H. Cocoletzi, Influence of point defects on the structural and electronic properties of SiC nanotubes, Central European Journal of Chemistry 12 (2014), 53.

DOI: 10.2478/s11532-013-0357-6

Google Scholar

[12] R.J. Baierle, R.H. Miwa, Hydrogen interaction with native defects in SiC nanotubes, Phys. Rev. B 76 (2007) 205410.

Google Scholar

[13] R. L. Liang, Y. Zhang, J. M. Zhang, and V. Ji, Adsorption of oxygen atom on the pristine and antisite defected SiC nanotubes, Physica B 405 (2010), 2673.

DOI: 10.1016/j.physb.2010.03.053

Google Scholar

[14] M. Khodadad, S. M. Baizaee, M. Yuonesi, and H. Kahnouji, First-principles study of structural and electronic properties of lithium doped SiC nanotubes, Physica E 59(2014), 139.

DOI: 10.1016/j.physe.2014.01.015

Google Scholar

[15] J. Dai, D. Chen, and Q. Li, First-principle study on the X (X=N, P, As, Sb) doped (9, 0) single -walled SiC nanotubes, Physica B 447(2014), 56.

DOI: 10.1016/j.physb.2014.04.065

Google Scholar

[16] J. Song, H. Liu, Y. Guo and K. Zhu, Electronic structures of Stone-Wales defective chiral (6, 2) silicon carbide nanotubes: First-principles calculations, Physica E 74 (2015) 198-203.

DOI: 10.1016/j.physe.2015.06.013

Google Scholar

[17] B. Delley, An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 92 (1990) 508.

DOI: 10.1063/1.458452

Google Scholar

[18] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[19] H.J. Monkhorst, J.D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B, Solid State 16 (1977) 1746.

Google Scholar

[20] M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A.N. Andriotis, Structure and stability of SiC nanotubes, Phys. Rev. B 69 (2004) 115322.

DOI: 10.1103/physrevb.69.115322

Google Scholar

[21] M. G. Mashapa, N. Chetty, and S. S. Ray, Ab Initio Studies of Vacancies in (8, 0) and (8, 8) Single-Walled Carbon and Boron Nitride Nanotubes, Journal of Nanoscience and Nanotechnology 12 (2012) 7030.

DOI: 10.1166/jnn.2012.6487

Google Scholar

[22] P. Piquini, R. J. Baierle, T. M. Schmidt, and A. Fazzio, Formation energy of native defects in BN nanotubes: an ab initio study, Nanotechnology 16 (2005) 827.

DOI: 10.1088/0957-4484/16/6/035

Google Scholar

[23] M. L. Colussi, R. J. Baierle, and R. H. Miwa, Stability and electronic properties of native defects and substitutional impurities in GaN nanotubes, J. Appl. Phys. 104 (2008) 033712.

DOI: 10.1063/1.2963698

Google Scholar