[1]
Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett 72 (1998) 3270.
Google Scholar
[2]
D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 (1998) 399.
DOI: 10.1016/s0038-1098(97)10145-4
Google Scholar
[3]
H. Chen , S.Y. Ma , H.Y. Jiao et. al, The effect microstructure on the gas properties of Ag doped zinc oxide sensors: Spheres and sea- urchin-like nanostructures. Journal of Alloys and Compounds 687 (2016) 342-351.
DOI: 10.1016/j.jallcom.2016.06.153
Google Scholar
[4]
V. L. Patil , S. A. Vanalaka, P.S. Patil et. al, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sensors and Actuators B 239 (2017) 1185–1193.
DOI: 10.1016/j.snb.2016.08.130
Google Scholar
[5]
S.I. Boyadjiev, V. Georgieva, R. Yordanov et. al, Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors. Applied Surface Science 387 (2016) 1230–1235.
DOI: 10.1016/j.apsusc.2016.06.007
Google Scholar
[6]
S. Parka, S. Kima, H. Kheel et. al, Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor. Materials Research Bulletin 82 (2016) 130–135.
DOI: 10.1016/j.materresbull.2016.02.011
Google Scholar
[7]
K. Shingange, Z.P. Tshabalala , O.M. Ntwaeaborwa et. al, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. Journal of Colloid and Interface Science 479 (2016) 127–138.
DOI: 10.1016/j.jcis.2016.06.046
Google Scholar
[8]
Y.H. Zhang, C.Y. Liu, F.L. Gong et. al, Large scale synthesis of hexagonal simonkolleit nanosheets for ZnO gas sensors with enhanced performances. Materials Letters 186 (2017) 7–11.
DOI: 10.1016/j.matlet.2016.09.080
Google Scholar
[9]
C.Y. Zhu , C.C. Ling, G. Brauer, et. al, Deep-level defects study of arsenic-implanted ZnO single crystal. Microelectronics Journal 40 (2009) 286–288.
DOI: 10.1016/j.mejo.2008.07.037
Google Scholar
[10]
E. Pál , V. Hornok, A. Oszkó, et. al, Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures. Colloids and Surfaces A: Physicochem. Eng. Aspects 340 (2009) 1–9.
DOI: 10.1016/j.colsurfa.2009.01.020
Google Scholar
[11]
C.H. Ahn, Y. Y. Kim, S. W. Kang et. al, Phosphorus-doped ZnO films grown nitrogen ambience by magnetron sputter ing on sapphire substrates. Physica B 401–402 (2007) 370 – 373.
DOI: 10.1016/j.physb.2007.08.190
Google Scholar
[12]
D.H. Fan, R. Zhang, Y. Li. Synthesis and optical properties of phosphorus-doped ZnO nanocombs. Solid State Communications 150 (2010) 1911–(1914).
DOI: 10.1016/j.ssc.2010.07.036
Google Scholar
[13]
F. Li, J.F. Wu, Q.H. Qin, et. al, A facile method to prepare monodispersed ZnO–Ag core-shell microspheres. Superlattices and Microstructures 47 (2010) 232–240.
DOI: 10.1016/j.spmi.2009.10.010
Google Scholar
[14]
P. Petersen, W. Krasser. Surface enhanced Raman scattering from a ternary catalyst Cu/ZnO/Al2O3 under reaction conditions. Applied Surface Science 103 (1996) 91-100.
DOI: 10.1016/0169-4332(96)00472-2
Google Scholar