Influence of PCBM on the Glass Transition Temperature (Tg) of Poly(N-Vinylcarbazole)-Based Photorefractive Composite

Article Preview

Abstract:

2,5-dimethyl-(4-p-nitrophenylazo) phenetole (DMNPAPE) was synthesized. And its structure was confirmed with ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The photorefractive composite consist of 33 wt % poly (N-vinycarbazole) (PVK), 50 wt % 2, 5-dimethyl-(4-p-nitrophenylazo) phenetole (DMNPAPE) and 16 wt % ethyl carbazole (ECZ) doped with x wt % (≤1 wt%) [6, 6]-phenyl C61 butyric acid methyl ester (PCBM) was fabricated. The influence of PCBM on the glass transition temperature (Tg) of the photorefractive composite was studied using a differential scanning calorimetric (DSC) method. The active energy of glass transition (Eg) was evaluated by Kissinger’s and Moynihan’s relation. The analysis results indicate that the transition region shifts to higher temperatures with the increasing heating rate, and PCBM content (≤1.0 wt %) can influence Tg of PVK - based PR composite polymers. The Tg first increase and then went down with the PCBM content (below 1.0 wt %) increasing. The possible cause of the influence of PCBM on Tg was proposed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] O. Ostroverkhova, and W. E. Moerner, Organic photorefractives: mechanisms, materials, and applications, Chemical Reviews. 104 (2004) 3267-3304.

DOI: 10.1021/cr960055c

Google Scholar

[2] N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, Photorefractive dynamics in poly(triarylamine)-based polymer composites, Optics express. 23 (2015) 25158-25170.

DOI: 10.1364/oe.23.025158

Google Scholar

[3] Y. Yang, H. Xu, F. Liu, H. Wang, G. Deng, P. Si, H. Huang, S. Bo, J. Liu, L. Qiu, Z. Zhen, and X. Liu, Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity, Journal of Materials Chemistry C. 2 (2014).

DOI: 10.1039/c4tc00508b

Google Scholar

[4] T. Xue, H. Zhao, C. Meng, J. Fu, and J. Zhang, Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers, Optics express. 22 (2014) 20964-20972.

DOI: 10.1364/oe.22.020964

Google Scholar

[5] C. M. Liebig, S. H. Buller, P. P. Banerjee, S. A. Basun, P. A. Blanche, J. Thomas, C. W. Christenson, N. Peyghambarian, and D. R. Evans, Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields, Optics express. 21 (2013).

DOI: 10.1364/oe.21.030392

Google Scholar

[6] W. Wu, C. Ye, G. Yu, Y. Liu, J. Qin, and Z. Li, New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: improved optical transparency and enhanced NLO effects, Chemistry. 18 (2012).

DOI: 10.1002/chem.201102872

Google Scholar

[7] S. Kober, J. Prauzner, M. Salvador, F. B. Kooistra, J. C. Hummelen, and K. Meerholz, 1064-nm sensitive organic photorefractive composites, Advanced materials. 22 (2010) 1383-1386.

DOI: 10.1002/adma.200903005

Google Scholar

[8] P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature. 468 (2010).

DOI: 10.1038/nature09521

Google Scholar

[9] J. Thomas, R. A. Norwood, and N. Peyghambarian, Non-linear optical polymers for photorefractive applications, Journal of Materials Chemistry. 19 (2009) 7476.

DOI: 10.1039/b908130e

Google Scholar

[10] F. Gallego-Gomez, F. del Monte, and K. Meerholz, Optical gain by a simple photoisomerization process, Nature materials. 7 (2008) 490-497.

DOI: 10.1038/nmat2186

Google Scholar

[11] K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, A photorefractive polymer with high optical gain and diffraction efficiency near 100%, Nature. 371 (1994) 497-500.

DOI: 10.1038/371497a0

Google Scholar

[12] L. Sun, X. Luo, S. Chen, L. Cao, J. Huang, H. Liu, F. Wang, Y. Fang, Q. Zhang, and Y. Qu, Optical properties of organic photorefractive polymers for phase retrieval and filtering, High Power Laser & Particle Beams. 26 (2014) 26092013.

DOI: 10.3788/hplpb20142609.92013

Google Scholar

[13] N. Tsutsumi, Photorefractive Polymer, Encyclopedia of Polymeric Nanomaterials. 27 (2015) 1597-1614.

DOI: 10.1007/978-3-642-29648-2_165

Google Scholar

[14] J. Thomas, C. W. Christenson, P. A. Blanche, M. Yamamoto, R. A. Norwood, and N. Peyghambarian, Photoconducting Polymers for Photorefractive 3D Display Applications†, Chemistry of Materials. 23 (2010) 416-429.

DOI: 10.1021/cm102144h

Google Scholar

[15] D. Simatos, G. Blond, G. Roudaut, D. Champion, J. Perez, and A. L. Faivre, Influence of heating and cooling rates on the glass transition temperature and the fragility parameter of sorbitol and fructose as measured by DSC, Journal of Thermal Analysis & Calorimetry. 47 (1996).

DOI: 10.1007/bf01992837

Google Scholar

[16] Z. Li, J. Shi, Y. Zheng, M. Huang, Z. Chen, Q. Gong, and S. Cao, Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores, Polymer. 49 (2008) 2107-2114.

DOI: 10.1016/j.polymer.2007.09.038

Google Scholar

[17] A. A. Abu-Sehly, S. N. Alamri, and A. A. Joraid, Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples, Journal of Alloys & Compounds. 476 (2009) 348-351.

DOI: 10.1016/j.jallcom.2008.08.059

Google Scholar

[18] R. P. Wang, C. J. Zha, A. V. Rode, S. J. Madden, and B. Luther-Davies, Thermal characterization of Ge–As–Se glasses by differential scanning calorimetry, Journal of Materials Science Materials in Electronics. 18 (2007) 419-422.

DOI: 10.1007/s10854-007-9229-1

Google Scholar

[19] A. A. Elabbar, M. A. El-Oyoun, A. A. Abu-Sehly, and S. N. Alamri, Crystallization kinetics study of Pb4. 3Se95. 7 chalcogenide glass using DSC technique, Journal of Physics & Chemistry of Solids 69 (2008) 2527-2530.

DOI: 10.1016/j.jpcs.2008.05.008

Google Scholar

[20] S. M. Sabzevari, S. Alavisoltani, and B. Minaie, Effect of thermoplastic toughening agent on glass transition temperature and cure kinetics of an epoxy prepreg, Journal of Thermal Analysis & Calorimetry. 106 (2011) 905-911.

DOI: 10.1007/s10973-011-1587-5

Google Scholar

[21] M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15, Materials Science & Engineering 23 (1976) 173-177.

DOI: 10.1016/0025-5416(76)90189-0

Google Scholar

[22] A. H. Moharram, A. A. Abu-Sehly, M. A. El-Oyoun, and A. S. Soltan, Pre-crystallization and crystallization kinetics of some Se-Te-Sb glasses, Physica B Condensed Matter. 324 (2002) 344-351.

DOI: 10.1016/s0921-4526(02)01421-7

Google Scholar

[23] R. Chander, and R. Thangaraj, Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors, Applied Physics A. 99 (2010) 181-187.

DOI: 10.1007/s00339-009-5486-6

Google Scholar

[24] P. Liu, L. Yu, H. Liu, L. Chen, and L. Li, Glass transition temperature of starch studied by a high-speed DSC, Carbohydrate Polymers. 77 (2009) 250-253.

DOI: 10.1016/j.carbpol.2008.12.027

Google Scholar

[25] R. S. Tiwari, N. Mehta, R. K. Shukla, and A. Kumar, Kinetic Parameters of Glass Transition in Glassy Se1-xSbx Alloys, Turkish Journal of Physics. 29 (2005) 233-241.

Google Scholar

[26] M. A. Abdel-Rahim, A. Y. Abdel-Latief, A. S. Soltan, and M. A. El-Oyoun, Crystallization kinetics of overlapping phases in Cu6Ge14Te80 chalcogenide glass, Physica B Condensed Matter. 322 (2002) 252-261.

DOI: 10.1016/s0921-4526(02)01190-0

Google Scholar

[27] C. Chattopadhyay, S. Sarkar, S. Sangal, and K. Mondal, Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data, Transactions of the Indian Institute of Metals. 67 (2014) 945-958.

DOI: 10.1007/s12666-014-0422-7

Google Scholar

[28] A. A. Joraid, A. A. Abu-Sehly, and S. N. Alamri, A study on isothermal kinetics of glassy Sb9. 1Te20. 1Se70. 8 alloy, Journal of Taibah University for Science. 2 (2009) 106-117.

DOI: 10.1016/s1658-3655(12)60013-2

Google Scholar

[29] El-Oyoun, A. M., Shurit, M. G., Gaber, A., Afify, and N., Differential scanning calorimetric study of Ga5Se95 glass, Journal of Physics & Chemistry of Solids. 64 (2003) 821–826.

DOI: 10.1016/s0022-3697(02)00412-2

Google Scholar

[30] C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker, Dependence of the glass transition temperature on heating and cooling rate, The Journal of Physical Chemistry. 78 (1974) 2673-2677.

DOI: 10.1021/j100619a008

Google Scholar

[31] E. Woldt, and D. J. Jensen, Recrystallization kinetics in copper: Comparison between techniques, Metallurgical & Materials Transactions A. 26 (1995) 1717-1724.

DOI: 10.1007/bf02670758

Google Scholar

[32] M. Avrami, Kinetics of Phase Change: II. Transformation—Time Relation for Random Distribution of Nuclei, Journal of Chemical Physics. 8 (1940) 212-224.

DOI: 10.1063/1.1750631

Google Scholar

[33] S. Chen, B. Chen, C. Huang, X. Luo, Y. Fang, and W. Wu, Investigation of glass transition kinetics in C60 -doped carbazole-based photorefractive polyacrylates, Materialprufung. 58 (2016) 536-541.

DOI: 10.3139/120.110887

Google Scholar

[34] J. E. Mark, Physical Properties of Polymers Handbook., Springer, New York, (2007).

Google Scholar

[35] L. H. Sperling, Introduction to Physical Polymer Science, Fourth Edition, (2006), pp.54-55.

Google Scholar