[1]
O. Ostroverkhova, and W. E. Moerner, Organic photorefractives: mechanisms, materials, and applications, Chemical Reviews. 104 (2004) 3267-3304.
DOI: 10.1021/cr960055c
Google Scholar
[2]
N. Tsutsumi, K. Kinashi, K. Masumura, and K. Kono, Photorefractive dynamics in poly(triarylamine)-based polymer composites, Optics express. 23 (2015) 25158-25170.
DOI: 10.1364/oe.23.025158
Google Scholar
[3]
Y. Yang, H. Xu, F. Liu, H. Wang, G. Deng, P. Si, H. Huang, S. Bo, J. Liu, L. Qiu, Z. Zhen, and X. Liu, Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity, Journal of Materials Chemistry C. 2 (2014).
DOI: 10.1039/c4tc00508b
Google Scholar
[4]
T. Xue, H. Zhao, C. Meng, J. Fu, and J. Zhang, Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers, Optics express. 22 (2014) 20964-20972.
DOI: 10.1364/oe.22.020964
Google Scholar
[5]
C. M. Liebig, S. H. Buller, P. P. Banerjee, S. A. Basun, P. A. Blanche, J. Thomas, C. W. Christenson, N. Peyghambarian, and D. R. Evans, Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields, Optics express. 21 (2013).
DOI: 10.1364/oe.21.030392
Google Scholar
[6]
W. Wu, C. Ye, G. Yu, Y. Liu, J. Qin, and Z. Li, New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: improved optical transparency and enhanced NLO effects, Chemistry. 18 (2012).
DOI: 10.1002/chem.201102872
Google Scholar
[7]
S. Kober, J. Prauzner, M. Salvador, F. B. Kooistra, J. C. Hummelen, and K. Meerholz, 1064-nm sensitive organic photorefractive composites, Advanced materials. 22 (2010) 1383-1386.
DOI: 10.1002/adma.200903005
Google Scholar
[8]
P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature. 468 (2010).
DOI: 10.1038/nature09521
Google Scholar
[9]
J. Thomas, R. A. Norwood, and N. Peyghambarian, Non-linear optical polymers for photorefractive applications, Journal of Materials Chemistry. 19 (2009) 7476.
DOI: 10.1039/b908130e
Google Scholar
[10]
F. Gallego-Gomez, F. del Monte, and K. Meerholz, Optical gain by a simple photoisomerization process, Nature materials. 7 (2008) 490-497.
DOI: 10.1038/nmat2186
Google Scholar
[11]
K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, A photorefractive polymer with high optical gain and diffraction efficiency near 100%, Nature. 371 (1994) 497-500.
DOI: 10.1038/371497a0
Google Scholar
[12]
L. Sun, X. Luo, S. Chen, L. Cao, J. Huang, H. Liu, F. Wang, Y. Fang, Q. Zhang, and Y. Qu, Optical properties of organic photorefractive polymers for phase retrieval and filtering, High Power Laser & Particle Beams. 26 (2014) 26092013.
DOI: 10.3788/hplpb20142609.92013
Google Scholar
[13]
N. Tsutsumi, Photorefractive Polymer, Encyclopedia of Polymeric Nanomaterials. 27 (2015) 1597-1614.
DOI: 10.1007/978-3-642-29648-2_165
Google Scholar
[14]
J. Thomas, C. W. Christenson, P. A. Blanche, M. Yamamoto, R. A. Norwood, and N. Peyghambarian, Photoconducting Polymers for Photorefractive 3D Display Applications†, Chemistry of Materials. 23 (2010) 416-429.
DOI: 10.1021/cm102144h
Google Scholar
[15]
D. Simatos, G. Blond, G. Roudaut, D. Champion, J. Perez, and A. L. Faivre, Influence of heating and cooling rates on the glass transition temperature and the fragility parameter of sorbitol and fructose as measured by DSC, Journal of Thermal Analysis & Calorimetry. 47 (1996).
DOI: 10.1007/bf01992837
Google Scholar
[16]
Z. Li, J. Shi, Y. Zheng, M. Huang, Z. Chen, Q. Gong, and S. Cao, Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores, Polymer. 49 (2008) 2107-2114.
DOI: 10.1016/j.polymer.2007.09.038
Google Scholar
[17]
A. A. Abu-Sehly, S. N. Alamri, and A. A. Joraid, Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples, Journal of Alloys & Compounds. 476 (2009) 348-351.
DOI: 10.1016/j.jallcom.2008.08.059
Google Scholar
[18]
R. P. Wang, C. J. Zha, A. V. Rode, S. J. Madden, and B. Luther-Davies, Thermal characterization of Ge–As–Se glasses by differential scanning calorimetry, Journal of Materials Science Materials in Electronics. 18 (2007) 419-422.
DOI: 10.1007/s10854-007-9229-1
Google Scholar
[19]
A. A. Elabbar, M. A. El-Oyoun, A. A. Abu-Sehly, and S. N. Alamri, Crystallization kinetics study of Pb4. 3Se95. 7 chalcogenide glass using DSC technique, Journal of Physics & Chemistry of Solids 69 (2008) 2527-2530.
DOI: 10.1016/j.jpcs.2008.05.008
Google Scholar
[20]
S. M. Sabzevari, S. Alavisoltani, and B. Minaie, Effect of thermoplastic toughening agent on glass transition temperature and cure kinetics of an epoxy prepreg, Journal of Thermal Analysis & Calorimetry. 106 (2011) 905-911.
DOI: 10.1007/s10973-011-1587-5
Google Scholar
[21]
M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15, Materials Science & Engineering 23 (1976) 173-177.
DOI: 10.1016/0025-5416(76)90189-0
Google Scholar
[22]
A. H. Moharram, A. A. Abu-Sehly, M. A. El-Oyoun, and A. S. Soltan, Pre-crystallization and crystallization kinetics of some Se-Te-Sb glasses, Physica B Condensed Matter. 324 (2002) 344-351.
DOI: 10.1016/s0921-4526(02)01421-7
Google Scholar
[23]
R. Chander, and R. Thangaraj, Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors, Applied Physics A. 99 (2010) 181-187.
DOI: 10.1007/s00339-009-5486-6
Google Scholar
[24]
P. Liu, L. Yu, H. Liu, L. Chen, and L. Li, Glass transition temperature of starch studied by a high-speed DSC, Carbohydrate Polymers. 77 (2009) 250-253.
DOI: 10.1016/j.carbpol.2008.12.027
Google Scholar
[25]
R. S. Tiwari, N. Mehta, R. K. Shukla, and A. Kumar, Kinetic Parameters of Glass Transition in Glassy Se1-xSbx Alloys, Turkish Journal of Physics. 29 (2005) 233-241.
Google Scholar
[26]
M. A. Abdel-Rahim, A. Y. Abdel-Latief, A. S. Soltan, and M. A. El-Oyoun, Crystallization kinetics of overlapping phases in Cu6Ge14Te80 chalcogenide glass, Physica B Condensed Matter. 322 (2002) 252-261.
DOI: 10.1016/s0921-4526(02)01190-0
Google Scholar
[27]
C. Chattopadhyay, S. Sarkar, S. Sangal, and K. Mondal, Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data, Transactions of the Indian Institute of Metals. 67 (2014) 945-958.
DOI: 10.1007/s12666-014-0422-7
Google Scholar
[28]
A. A. Joraid, A. A. Abu-Sehly, and S. N. Alamri, A study on isothermal kinetics of glassy Sb9. 1Te20. 1Se70. 8 alloy, Journal of Taibah University for Science. 2 (2009) 106-117.
DOI: 10.1016/s1658-3655(12)60013-2
Google Scholar
[29]
El-Oyoun, A. M., Shurit, M. G., Gaber, A., Afify, and N., Differential scanning calorimetric study of Ga5Se95 glass, Journal of Physics & Chemistry of Solids. 64 (2003) 821–826.
DOI: 10.1016/s0022-3697(02)00412-2
Google Scholar
[30]
C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker, Dependence of the glass transition temperature on heating and cooling rate, The Journal of Physical Chemistry. 78 (1974) 2673-2677.
DOI: 10.1021/j100619a008
Google Scholar
[31]
E. Woldt, and D. J. Jensen, Recrystallization kinetics in copper: Comparison between techniques, Metallurgical & Materials Transactions A. 26 (1995) 1717-1724.
DOI: 10.1007/bf02670758
Google Scholar
[32]
M. Avrami, Kinetics of Phase Change: II. Transformation—Time Relation for Random Distribution of Nuclei, Journal of Chemical Physics. 8 (1940) 212-224.
DOI: 10.1063/1.1750631
Google Scholar
[33]
S. Chen, B. Chen, C. Huang, X. Luo, Y. Fang, and W. Wu, Investigation of glass transition kinetics in C60 -doped carbazole-based photorefractive polyacrylates, Materialprufung. 58 (2016) 536-541.
DOI: 10.3139/120.110887
Google Scholar
[34]
J. E. Mark, Physical Properties of Polymers Handbook., Springer, New York, (2007).
Google Scholar
[35]
L. H. Sperling, Introduction to Physical Polymer Science, Fourth Edition, (2006), pp.54-55.
Google Scholar