Why Synthesizing Poly(1,4-Phenylene Sulfide) through Oxidative Polymerization Has not so far Been Adopted as the Industrial Process

Article Preview

Abstract:

Synthesis of poly (1, 4-phenylene sulfide) (PPS) through oxidative polymerization seems promising to us. Comparing with current commercial method to poly (1, 4-phenylene sulfide) from 1, 4-phenylene sulfide and sodium sulfide (Phillips’ Method), there are many advantages of the oxidative polymerization method. For example, it can synthesize PPS at normal temperature and pressure; the yield of reaction is very high; it provides pure PPS without salt contamination. However, several years have passed away; synthesis of poly (1, 4-phenylene sulfide) through oxidative polymerization has not so far been adopted as the industrial process. Many of us are puzzled, why Through studying all kinds of reported preparation route to poly (1, 4-phenylene sulfide) through oxidative polymerization compared to Phillips’ Method, a generic polymerization mechanism is achieved for most of them excepting two with obvious shortcomings. We suddenly realize that synthesis of poly (1, 4-phenylene sulfide) through oxidative polymerization seems unsuitable to be used in industrial production recently because of its own limits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-56

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Okubo, T. Sugeno, H. Tagaya, Chemical recycling of poly(p-phenylene sulfide) in high temperature fluids, Polym. Degrad. Stabil. 111 (2015) 109-113.

DOI: 10.1016/j.polymdegradstab.2014.10.027

Google Scholar

[2] K. Shimizu, F.H. Blaikie, M. Kongsfelt, K.D.S. Sorensen, S.U. Pedersen, K. Daasbjerg, Electrochemical Procedure for Constructing Poly(phenylene sulfide) Brushes on Glassy Carbon and Stainless Steel, J. Polym. Sci. Pol. Chem. 54 (2016) 91-98.

DOI: 10.1002/pola.27893

Google Scholar

[3] N.R. Kang, S.Y. Lee, D.W. Shin, D.S. Hwang, K.H. Lee, D.H. Cho, J.H. Kim, Y.M. Lee, Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes, J. Power Sources 307 (2016).

DOI: 10.1016/j.jpowsour.2016.01.051

Google Scholar

[4] N. Zwettler, J.S. Engbaek, R. Lundsgaard, I. Paranowska, T.E. Nielsen, S. Clyens, J. Christiansen, M.O. Andersen, Chemical surface functionalization of bulk poly (p-phenylene sulfide) yields a stable sulfonic acid catalyst, React. Funct. Polym. 88 (2015).

DOI: 10.1016/j.reactfunctpolym.2015.02.006

Google Scholar

[5] Y. Gao, Q. Fu, L. Niu, Z. Shi, Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching, J. Mater. Sci. 50 (2015) 3622-3630.

DOI: 10.1007/s10853-015-8923-2

Google Scholar

[6] S. Nara, H.T. Oyama, Effects of partial miscibility on the structure and properties of novel high performance blends composed of poly(p-phenylene sulfide) and poly(phenylsulfone), Polym. J. 46 (2014) 568-575.

DOI: 10.1038/pj.2014.21

Google Scholar

[7] A. Noll, K. Friedrich, T. Burkhart, U. Breuer, Effective multifunctionality of poly(p-phenylene sulfide) nanocomposites filled with different amounts of carbon nanotubes, graphite, and short carbon fibers, Polym Composite 34 (2013) 1405-1412.

DOI: 10.1002/pc.22427

Google Scholar

[8] S.P. Ju, T.J. Haung, C.H. Liao, J.W. Chang, Investigation of thermal conductivity of graphite flake/poly (p-phenylene sulfide) composite by experimental measurement and non-equilibrium molecular dynamics simulation, Polymer 54 (2013) 4702-4709.

DOI: 10.1016/j.polymer.2013.06.013

Google Scholar

[9] J.M. Gonzalez-Dominguez, P. Castell, S. Bespin-Gascon, A. Anson-Casaos, A.M. Diez-Pascual, M.A. Gomez-Fatou, A.M. Benito, W.K. Maser, M.T. Martinez, Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm35272a

Google Scholar

[10] D.R. Fahey, C.E. Ash, Mechanism of poly(para-phenylene sulfide) growth from para-dichlorobenzene and sodium sulfide, Macromolecules 24 (1991) 4242-4249.

DOI: 10.1021/ma00015a003

Google Scholar

[11] R.W. Campbell, J. James T. Edmonds, U.S. Patent 4, 038, 259. (1977).

Google Scholar

[12] J. James T. Edmonds, J. Harold Wayne HiIl, U.S. Patent 3, 354, 129. (1967).

Google Scholar

[13] R.W. Lenz, C.E. Handlovits, H.A. Smith, Phenylene sulfide polymers. III. The synthesis of linear polyphenylene sulfide, Journal of Polymer Science 58 (1962) 351-367.

DOI: 10.1002/pol.1962.1205816620

Google Scholar

[14] R.W. Lenz, C.E. Handlovits, Phenylene sulfide polymers. II. Structure of polymers obtained by the Macallum polymerization, Journal of Polymer Science 43 (1960) 167-181.

DOI: 10.1002/pol.1960.1204314113

Google Scholar

[15] M. Wejchan-Judek, E. Rogal, The influence of a catalyst on the synthesis of poly (p-phenylene sulphide) from thiophenol and thionyl chloride, Polymer communications 25 (1984) 53-54.

DOI: 10.1016/0032-3861(81)90028-8

Google Scholar

[16] M. Wejchan-Judek, E. Rogal, A. Zuk, Synthesis of poly-p-phenylene sulphide by oxidation of thiophenol with thionyl chloride in the presence of aluminium chloride, Polymer 22 (1981) 845-847.

DOI: 10.1016/0032-3861(81)90028-8

Google Scholar

[17] A. Zuk, M. Wejchan-Judek, E. Rogal, Homopolycondensation of thiophenol, Polymer 19 (1978) 438-440.

DOI: 10.1016/0032-3861(78)90252-5

Google Scholar

[18] C.W. Moberly, U.S. Patent 3, 878, 176. (1975).

Google Scholar

[19] F. Aida, Y. Takatori, D. Kiyokawa, K. Nagamatsu, H. Nishide, K. Oyaizu, Poly(1, 4-phenylene sulfide) (pps) synthesis via oxidative polymerization of diphenyl disulfide: mechanistic insight into the selective formation of 1, 4-thiophenylene chain, Chem. Lett. 44 (2015).

DOI: 10.1246/cl.150146

Google Scholar

[20] L. Chen, Sythesis of hyperbranched poly (phenylene sulfide) via a poly(sulfonium cation) precursor, School of Chemistry and Chemical Engineering, Southwest University, Chongqin, China, 2013, p.66.

Google Scholar

[21] S.O. Yemul, O.S. Yemul, S. Ponrathnam, C. Rajan, A. Fradet, Synthesis of poly (thio‐1, 4‐phenylene) by oxidative coupling reaction of diphenyl disulfide with potassium persulfate in strongly acidic solutions, Macromol. Rapid. Comm. 19 (1998).

DOI: 10.1002/(sici)1521-3927(19981201)19:12<635::aid-marc635>3.0.co;2-6

Google Scholar

[22] E. Tsuchida, E. Shouji, F. Suzuki, K. Yamamoto, Synthesis of Poly (phenylene sulfide) by O2 Oxidative Polymerization of Methyl Phenyl Sulfide, Macromolecules 27 (1994) 1057-1060.

DOI: 10.1021/ma00082a027

Google Scholar

[23] K. Yamamoto, E. Tsuchida, H. Nishide, M. Jikei, K. Oyaizu, Oxovanadium-catalyzed oxidative polymerization of diphenyl disulfides with oxygen, Macromolecules 26 (1993) 3432-3437.

DOI: 10.1021/ma00065a029

Google Scholar

[24] E. Tsuchida, E. Shouji, K. Yamamoto, Synthesis of high-molecular-weight poly (phenylene sulfide) by oxidative polymerization via poly (sulfonium cation) from methyl phenyl sulfoxide, Macromolecules 26 (1993) 7144-7148.

DOI: 10.1021/ma00078a005

Google Scholar

[25] E. Tsuchida, K. Yamamoto, H. Nishide, S. Yoshida, M. Jikei, Polymerization of diphenyl disulfide by the SS bond cleavage with a Lewis acid: a novel preparation route to poly (p-phenylene sulfide), Macromolecules 23 (1990) 2101-2106.

DOI: 10.1021/ma00210a001

Google Scholar

[26] E. Tsuchida, K. Yamamoto, M. Jikei, H. Nishide, Oxidative polymerization of diphenyl disulfides with quinones: formation of ultrapure poly (p-phenylene sulfide) s, Macromolecules 23 (1990) 930-934.

DOI: 10.1021/ma00206a004

Google Scholar

[27] E. Tsuchida, K. Yamamoto, M. Jikei, H. Nishide, New synthesis of poly (phenylene sulfide) s through oxygen oxidative polymerization of diphenyl disulfide with vanadium oxide catalyst, Macromolecules 22 (1989) 4138-4140.

DOI: 10.1021/ma00200a062

Google Scholar

[28] E. Tsuchida, K. Yamamoto, H. Nishide, S. Yoshida, Poly (p-phenylene sulfide)-yielding polymerization of diphenyl disulfide by SS bond cleavage with a Lewis acid, Macromolecules 20 (1987) 2030-(2031).

DOI: 10.1021/ma00174a060

Google Scholar

[29] E. Tsuchida, H. Nishide, K. Yamamoto, S. Yoshida, Electrooxidative polymerization of thiophenol to yield poly (p-phenylene sulfide), Macromolecules 20 (1987) 2315-2316.

DOI: 10.1021/ma00175a046

Google Scholar