Pore Structure Analysis of Large Size Gasar Cu Ingot Prepared by Bridgman Method

Article Preview

Abstract:

Large size Gasar ingots have the advantage of cost saving and productivity improvement, while little attention has been paid to the preparation of large size ingots, especially those with high structural quality. Bridgman method was introduced to fabricate large size Gasar metal ingot. High quality Gasar Cu cylinder sample of 150 mm in diameter and about 200 mm in height (weighing about 20 kg) was obtained at a proper withdrawing velocity. Pore structure distribution at different heights and radii in the sample was measured and analyzed in detail using the image analyzing software. The results showed that the pore aspect ratio changed slightly along the sample height. All the other structure parameters including porosity, penetrative porosity, penetrative pore area and number ratio, pore diameter, pore length and the pore aspect ratio kept almost constant at heights of over 65 mm, while they all varied little along the sample radius. Most of the pores were straight and round. The results suggested that Bridgman method was feasible for the fabrication of large size high quality Gasar metal ingots. This would promote the commercial application of Gasar metals, such as Gasar Cu for micro-channel heat sinks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1266-1275

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ide, M. Tane, H. Nakajima, Compressive deformation behavior of porous γ-TiAl with directional pores, Mater. Sci. Eng. A. 508(2009) 220-225.

DOI: 10.1016/j.msea.2009.01.046

Google Scholar

[2] T. Ichitsubo, M. Tane, H. Ogi, M. Hirao, T. Ike, H. Nakajima, Anisotropic elastic constants of lotus-type porous copper: measurements and micromechanics modeling, Acta Mater. 50(2002) 4105-4115.

DOI: 10.1016/s1359-6454(02)00228-8

Google Scholar

[3] M. Tane, R. Okamoto, H. Nakajima, Tensile deformation of anisotropic porous copper with directional pores, J. Mater. Res. 25(2010) 1975-(1982).

DOI: 10.1557/jmr.2010.0261

Google Scholar

[4] M. Tane, S.K. Hyun, H. Nakajima, Anisotropic electrical conductivity of lotus-type porous nickel, J. Appl. Phys. 97(2005) 103701.

DOI: 10.1063/1.1897069

Google Scholar

[5] H. Chiba, T. Ogushi, H. Nakajima, Heat transfer capacity of lotus-type porous copper heat sink for air cooling, J. Therm. Sci. Technol. 5(2010) 222-237.

DOI: 10.1299/jtst.5.222

Google Scholar

[6] H. Du, D.Z. Lu, J.Z. Qi, Y.F. Shen, L.S. Yin, Y. Wang, Z.G. Zheng, T.Y. Xiong, Heat dissipation performance of porous copper with elongated cylindrical pores, J. Mater. Sci. Technol. 30(2014) 934-938.

DOI: 10.1016/j.jmst.2014.03.014

Google Scholar

[7] H. Chiba, T. Ogushi, H. Nakajima, T. Ikeda, Heat transfer capacity of lotus-type porous copper heat sink, JSME Int. J., Ser. B. 47(2004) 516-521.

DOI: 10.1299/jsmeb.47.516

Google Scholar

[8] H.W. Zhang, L.T. Chen, Y. Liu, Y.X. Li, Experimental study on heat transfer performance of lotus-type porous copper heat sink, Int. J. Heat Mass Transfer. 56(2013) 172-180.

DOI: 10.1016/j.ijheatmasstransfer.2012.08.047

Google Scholar

[9] Y. Liu, H.F. Chen, H.W. Zhang, Y.X. Li, Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant, Int. J. Heat Mass Transfer. 80(2015) 605-613.

DOI: 10.1016/j.ijheatmasstransfer.2014.09.058

Google Scholar

[10] X.J. Wei, Y. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components, J. Electron. Packag. 126(2004) 60-66.

DOI: 10.1115/1.1647124

Google Scholar

[11] X.J. Wei, Y. Joshi, M.K. Patterson, Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices, J. Heat Transfer. 129(2007) 1432-1444.

DOI: 10.1115/1.2754781

Google Scholar

[12] T. Hung, W.M. Yan, W.P. Li, Analysis of heat transfer characteristics of double-layered microchannel heat sink, Int. J. Heat Mass Transfer. 55(2012) 3090-3099.

DOI: 10.1016/j.ijheatmasstransfer.2012.02.038

Google Scholar

[13] C.J. Kroeker, H.M. Soliman, S.J. Ormiston, Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels, Int. J. Heat Mass Transfer. 47(2004) 4733-4744.

DOI: 10.1016/j.ijheatmasstransfer.2004.05.028

Google Scholar

[14] M. Dehghan, M.S. Valipour, S. Saedodin, Microchannels enhanced by porous materials: Heat transfer enhancement or pressure drop increment? Energy Convers. Manage. 110(2016) 22-32.

DOI: 10.1016/j.enconman.2015.11.052

Google Scholar

[15] M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Convers. Manage. 78(2014) 347-358.

DOI: 10.1016/j.enconman.2013.10.063

Google Scholar

[16] C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, Appl. Therm. Eng. 30(2010) 96-103.

DOI: 10.1016/j.applthermaleng.2009.07.003

Google Scholar

[17] C. Leng, X.D. Wang, W.M. Yan, T.H. Wang, Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant, Energy Convers. Manage. 110(2016) 154-164.

DOI: 10.1016/j.enconman.2015.12.006

Google Scholar

[18] S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Appl. Therm. Eng. 62(2014).

DOI: 10.1016/j.applthermaleng.2013.08.005

Google Scholar

[19] T. Yeom, T. Simon, T. Zhang, M. Zhang, M. North, T.H. Cui, Enhanced heat transfer of heat sink channels with micro pin fin roughened walls, Int. J. Heat Mass Transfer. 92(2016) 617-627.

DOI: 10.1016/j.ijheatmasstransfer.2015.09.014

Google Scholar

[20] H. Chiba, T. Ogushi, S. Ueno, H. Nakajima, Effect of pore diameter distribution on heat transfer capacity of lotus-type porous copper heat sink for air cooling, Mater. Sci. Forum. 658(2010) 220-223.

DOI: 10.4028/www.scientific.net/msf.658.220

Google Scholar

[21] K. Muramatsu, T. Ide, H. Nakajima, J.K. Eaton, Heat transfer and pressure drop of lotus-type porous metals, J. Heat Transfer. 135(2013) 072601.

DOI: 10.1115/1.4023564

Google Scholar

[22] L.T. Chen, H.W. Zhang, Y. Liu, Y.X. Li. Theoretical study on heat transfer performance of directionally solidified porous copper heat sink, Acta Metall. Sin. 48(2012) 1374-1380.

DOI: 10.3724/sp.j.1037.2012.00271

Google Scholar

[23] L.T. Chen, Study on heat transfer performance of directionally solidified porous copper microchannel heat sink, First ed., Tsinghua University, Beijing, (2013).

Google Scholar

[24] H. Nakajima, S.K. Hyun, J.S. Park, M. Tane, Fabrication of lotus-type porous metals by continuous zone melting and continuous casting techniques, Mater. Sci. Forum. 539(2007) 187-192.

DOI: 10.4028/www.scientific.net/msf.539-543.187

Google Scholar