[1]
T. Ide, M. Tane, H. Nakajima, Compressive deformation behavior of porous γ-TiAl with directional pores, Mater. Sci. Eng. A. 508(2009) 220-225.
DOI: 10.1016/j.msea.2009.01.046
Google Scholar
[2]
T. Ichitsubo, M. Tane, H. Ogi, M. Hirao, T. Ike, H. Nakajima, Anisotropic elastic constants of lotus-type porous copper: measurements and micromechanics modeling, Acta Mater. 50(2002) 4105-4115.
DOI: 10.1016/s1359-6454(02)00228-8
Google Scholar
[3]
M. Tane, R. Okamoto, H. Nakajima, Tensile deformation of anisotropic porous copper with directional pores, J. Mater. Res. 25(2010) 1975-(1982).
DOI: 10.1557/jmr.2010.0261
Google Scholar
[4]
M. Tane, S.K. Hyun, H. Nakajima, Anisotropic electrical conductivity of lotus-type porous nickel, J. Appl. Phys. 97(2005) 103701.
DOI: 10.1063/1.1897069
Google Scholar
[5]
H. Chiba, T. Ogushi, H. Nakajima, Heat transfer capacity of lotus-type porous copper heat sink for air cooling, J. Therm. Sci. Technol. 5(2010) 222-237.
DOI: 10.1299/jtst.5.222
Google Scholar
[6]
H. Du, D.Z. Lu, J.Z. Qi, Y.F. Shen, L.S. Yin, Y. Wang, Z.G. Zheng, T.Y. Xiong, Heat dissipation performance of porous copper with elongated cylindrical pores, J. Mater. Sci. Technol. 30(2014) 934-938.
DOI: 10.1016/j.jmst.2014.03.014
Google Scholar
[7]
H. Chiba, T. Ogushi, H. Nakajima, T. Ikeda, Heat transfer capacity of lotus-type porous copper heat sink, JSME Int. J., Ser. B. 47(2004) 516-521.
DOI: 10.1299/jsmeb.47.516
Google Scholar
[8]
H.W. Zhang, L.T. Chen, Y. Liu, Y.X. Li, Experimental study on heat transfer performance of lotus-type porous copper heat sink, Int. J. Heat Mass Transfer. 56(2013) 172-180.
DOI: 10.1016/j.ijheatmasstransfer.2012.08.047
Google Scholar
[9]
Y. Liu, H.F. Chen, H.W. Zhang, Y.X. Li, Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant, Int. J. Heat Mass Transfer. 80(2015) 605-613.
DOI: 10.1016/j.ijheatmasstransfer.2014.09.058
Google Scholar
[10]
X.J. Wei, Y. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components, J. Electron. Packag. 126(2004) 60-66.
DOI: 10.1115/1.1647124
Google Scholar
[11]
X.J. Wei, Y. Joshi, M.K. Patterson, Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices, J. Heat Transfer. 129(2007) 1432-1444.
DOI: 10.1115/1.2754781
Google Scholar
[12]
T. Hung, W.M. Yan, W.P. Li, Analysis of heat transfer characteristics of double-layered microchannel heat sink, Int. J. Heat Mass Transfer. 55(2012) 3090-3099.
DOI: 10.1016/j.ijheatmasstransfer.2012.02.038
Google Scholar
[13]
C.J. Kroeker, H.M. Soliman, S.J. Ormiston, Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels, Int. J. Heat Mass Transfer. 47(2004) 4733-4744.
DOI: 10.1016/j.ijheatmasstransfer.2004.05.028
Google Scholar
[14]
M. Dehghan, M.S. Valipour, S. Saedodin, Microchannels enhanced by porous materials: Heat transfer enhancement or pressure drop increment? Energy Convers. Manage. 110(2016) 22-32.
DOI: 10.1016/j.enconman.2015.11.052
Google Scholar
[15]
M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Convers. Manage. 78(2014) 347-358.
DOI: 10.1016/j.enconman.2013.10.063
Google Scholar
[16]
C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, Appl. Therm. Eng. 30(2010) 96-103.
DOI: 10.1016/j.applthermaleng.2009.07.003
Google Scholar
[17]
C. Leng, X.D. Wang, W.M. Yan, T.H. Wang, Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant, Energy Convers. Manage. 110(2016) 154-164.
DOI: 10.1016/j.enconman.2015.12.006
Google Scholar
[18]
S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Appl. Therm. Eng. 62(2014).
DOI: 10.1016/j.applthermaleng.2013.08.005
Google Scholar
[19]
T. Yeom, T. Simon, T. Zhang, M. Zhang, M. North, T.H. Cui, Enhanced heat transfer of heat sink channels with micro pin fin roughened walls, Int. J. Heat Mass Transfer. 92(2016) 617-627.
DOI: 10.1016/j.ijheatmasstransfer.2015.09.014
Google Scholar
[20]
H. Chiba, T. Ogushi, S. Ueno, H. Nakajima, Effect of pore diameter distribution on heat transfer capacity of lotus-type porous copper heat sink for air cooling, Mater. Sci. Forum. 658(2010) 220-223.
DOI: 10.4028/www.scientific.net/msf.658.220
Google Scholar
[21]
K. Muramatsu, T. Ide, H. Nakajima, J.K. Eaton, Heat transfer and pressure drop of lotus-type porous metals, J. Heat Transfer. 135(2013) 072601.
DOI: 10.1115/1.4023564
Google Scholar
[22]
L.T. Chen, H.W. Zhang, Y. Liu, Y.X. Li. Theoretical study on heat transfer performance of directionally solidified porous copper heat sink, Acta Metall. Sin. 48(2012) 1374-1380.
DOI: 10.3724/sp.j.1037.2012.00271
Google Scholar
[23]
L.T. Chen, Study on heat transfer performance of directionally solidified porous copper microchannel heat sink, First ed., Tsinghua University, Beijing, (2013).
Google Scholar
[24]
H. Nakajima, S.K. Hyun, J.S. Park, M. Tane, Fabrication of lotus-type porous metals by continuous zone melting and continuous casting techniques, Mater. Sci. Forum. 539(2007) 187-192.
DOI: 10.4028/www.scientific.net/msf.539-543.187
Google Scholar