Microstructure and Magnetic Properties of (Nd1-2xPrxYx)2.28Fe13.58B1.14 Melt-Spun Alloys

Article Preview

Abstract:

As a rapid solidification technology, strip casting (SC) technology is one of importance method in the production of Nd2Fe14B-based rare-earth permanent magnets. (Nd1-2xPrxYx)2.28Fe13.58B1.14 (x=0.05, 0.10, 0.15, 0.20) alloys prepared by arc melting method under an argon atmosphere were annealed at 1173 K for 360 hrs and then were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC). Magnetic properties of the ribbons prepared by melt-spinning method with high cooling rate were measured by Physical Property Measurement System (PPMS). The XRD and SEM results showed that the annealed (Nd1-2xPrxYx)2.28Fe13.58B1.14 (x=0.10, 0.15, 0.20) alloys had a single phase with tetragonal Nd2Fe14B-tpyed structure, while the annealed (Nd0.90Pr0.05Y0.05)2.28Fe13.58B1.14 alloy contained Nd2Fe14B phase and α-Fe secondary phase. On the other hand, the coercivities (Hcj) of (Nd1-2xPrxYx)2.28Fe13.58B1.14 (x=0.05, 0.10, 0.15, 0.20) melt-spun alloys were about 13.42 kOe, 13.49 kOe, 7.97 kOe and 8.36 kOe, respectively, while the remanences (Br) of the alloys were 7.52 kGs, 7.48 kGs, 9.14 kGs and 7.48 kGs, respectively. In addition, The Curie temperature (Tc) of the annealed (Nd1-2xPrxYx)2.28Fe13.58B1.14 (x=0.05, 0.10, 0.15, 0.20) alloys were determined to be 573 K, 574 K, 579 K and 580 K, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1242-1246

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Castellero, D.H. Kang, I. H. Jung, G. Angella, J. Alloy Compd. 536 (2014) 111-116.

Google Scholar

[2] C.F. Sánchez-Valdés, P.J. Ibarra-Gaytán, J.L. Llamazares, M. Ávalos-Borja, Appl. Phys. Lett. 104 (2014) 212401.

Google Scholar

[3] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, J. Appl. Phys. 55 (1984) 2083-(2084).

Google Scholar

[4] Z.B. Li , B.G. Shen, M. Zhang, F.X. Hu, J.R. Sun, J. Alloy Compd. 628 (2015) 325-328.

Google Scholar

[5] M. Zhang, Z.B. Li, B.G. Shen, F.X. Hu, J.R. Sun. J. Alloy Compd. 651 (2015) 144-148.

Google Scholar

[6] A.K. Pathak, M. Khan, K.A. Gschneidner, R.W. McCallum, L. Zhou, K. Sun, K.W. Dennis, C. Zhou, F.E. Pinkerton, M. J. Kramer, V. K. Pecharsky, Adv. Mater. 27 (2015) 2663-2667.

DOI: 10.1002/adma.201404892

Google Scholar

[7] Z. Li, W.Q. Liu, S.S. Zha, Y.Q. Li, Y.Q. Wang, D.T. Zhang, M. Yue, J.X. Zhang, X.L. Huang. J. Magn. Magn. Mater. 393 (2015) 551-554.

Google Scholar

[8] K. Pei, M. Lin, Aru. Yan, X. Zhang. J. Magn. Magn. Mater. 406 (2016) 239-243.

Google Scholar

[9] X.C. Wang, M.G. Zhu, W. Li, L.Y. Zheng, D, L. Zhao, X. Du. J. Electron. Mater. Lett. 11 (2015) 109-112.

Google Scholar

[10] X.D. Fan, S. Guo, K, Chen, R. J. Chen, D. Lee, C. Y. You. J. Magn. Magn. Mater. 419 (2016) 394-399.

Google Scholar

[11] Z. Li, W.Q. Li, S.S. Zha, Y.Q. Li, Y.Q. Wang, D.T. Zhang, M. Y, J.X. Zhang. J. Rare. Earth. 33 (2015) 961-964.

Google Scholar

[12] M.G. Zhu , W. Li, J.D. Wang , L.Y. Zheng , Y.F. Li , K. Zhang , H.B. Feng, T. Liu. IEEE. T. Mag. 50 (2014) 1-4.

Google Scholar

[13] K. Pei, X. Zhang. M. Lin, Aru. Yan,. J. Magn. Magn. Mater. 398 (2016) 96-100.

Google Scholar

[14] M. Hussain, L.Z. Zhao, C. Zhang, D.L. Jiao, X.C. Zhong, Z.W. Liu. Phys. B. 483 (2016).

Google Scholar

[15] M. Hussain, J.L. Liu, Z. Zhao, J. Magn. Magn. Mater. 399 (2016) 26-31.

Google Scholar

[16] W. Fernengel, J. Magn. Magn. Mater. 83 (1990) 201-202.

Google Scholar

[17] H. Kato, T. Nomura, M. Kubota, T. Miyazaki, M. Motokawa, J. Appl. Phys. 6125 (2000) 87.

Google Scholar

[18] G. Fu, J. Wang, M.H. Rong, G.H. Rao. Mater. Sci. Forum. 848 (2016) 709-714.

Google Scholar

[19] S. Madeswaran, S. Tamano, S. Goto, and K. Tokiwa. J. Appl. Phys. 012014 (2010). 232-233.

Google Scholar