[1]
E.L. Odenberger, J. Hertzman, P. Thilderkvist, et al. Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V-PART 1: Material characterization. International Journal of Material Forming, 6 (2013) 391-402.
DOI: 10.1007/s12289-012-1093-8
Google Scholar
[2]
W.X. Yu, M.Q. Li, J. Luo. Effect of Processing Parameters on Microstructure and Mechanical Properties in High Temperature Deformation of Ti-6Al-4V Alloy. Rare Metal Materials and Engineering, 38 (2009) 0019-0024.
DOI: 10.1016/s1875-5372(10)60015-x
Google Scholar
[3]
T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, et al. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Materials Science and Engineering A, 279 (2000) 289-299.
DOI: 10.1016/s0921-5093(99)00173-2
Google Scholar
[4]
W.X. Yu, M.Q. Li, J. Luo. Effect of deformation parameters on the precipitation mechanism of secondary phase under high temperature isothermal compression of Ti–6Al–4V alloy. Materials Science and Engineering A, 527 (2010) 4210-4217.
DOI: 10.1016/j.msea.2010.03.024
Google Scholar
[5]
J. Luo, P. Ye, M.Q. Li, et al. Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy. Materials and Design, 88 (2015) 32-40.
DOI: 10.1016/j.matdes.2015.08.130
Google Scholar
[6]
K. Wang, M.Q. Li. Flow behavior and deformation mechanism in the isothermal compression of the TC8 titanium alloy. Materials Science and Engineering A, 600 (2014) 122-128.
DOI: 10.1016/j.msea.2014.02.002
Google Scholar
[7]
Y.F. Han, W.D. Zeng, Y.L. Qi, et al. The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy. Materials Science and Engineering A, 528 (2011) 8410-8416.
DOI: 10.1016/j.msea.2011.08.007
Google Scholar
[8]
J.K. Fan, J.S. Li, H.C. Kou, et al. Influence of solution treatment on microstructure and mechanical properties of a near b titanium alloy Ti-7333. Materials and Design, 83 (2015) 499–507.
DOI: 10.1016/j.matdes.2015.06.015
Google Scholar
[9]
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, et al. Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations. Materials Science and Engineering A, 284 (2000) 184-194.
DOI: 10.1016/s0921-5093(00)00741-3
Google Scholar
[10]
X.N. Peng, H.Z. Guo, Z.F. Shi, et al. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Materials Science and Engineering A, 605 (2014) 80–88.
DOI: 10.1016/j.msea.2014.03.047
Google Scholar
[11]
T. Seshacharyulu, B. Dutta. Influence of prior deformation rate on the mechanism of β→α+β transformation in Ti–6Al–4V. Scripta Materialia, 46 (2002) 673-678.
DOI: 10.1016/s1359-6462(02)00051-9
Google Scholar
[12]
K. Wang, M.Q. Li. Effects of heat treatment and hot deformation on the secondary α phase evolution of TC8 titanium alloy. Materials Science and Engineering A, 613 (2014) 209-216.
DOI: 10.1016/j.msea.2014.06.056
Google Scholar
[13]
J. Porntadawit, V. Uthaisangsuk, P. Choungthong. Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Materials Science and Engineering A, 599 (2014) 212–222.
DOI: 10.1016/j.msea.2014.01.064
Google Scholar
[14]
D.S. Kang, K.J. Lee, E.P. Kwon, et al. Variation of work hardening rate by oxygen contents in pure titanium alloy. Materials Science and Engineering A, 632 (2015) 120-126.
DOI: 10.1016/j.msea.2015.02.074
Google Scholar
[15]
K. Wang, M.Q. Li. Morphology and crystallographic orientation of the secondary α phase in a compressed α/β titanium alloy. Scripta Materialia, 68 (2013) 964-967.
DOI: 10.1016/j.scriptamat.2013.02.048
Google Scholar