Microstructure Evolution of Mg-4.5Zn-0.75Er Alloy Containing I-Phase during Hot Compression

Article Preview

Abstract:

The microstructure evolution of the Mg-4.5Zn-0.75Er alloy containing quasicrystalline phase (I-phase) during heat treatment and hot compression was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that the as-cast alloys mainly consisted of α-Mg matrix and I-phase. The I-phase with different morphologies could be found at both matrix and interdentritic boundaries. The I-phase almost dissolved into the matrix at 460 °C, meanwhile, some magnesium-rare earth phase (Mg-Er phase) was precipitated and the volume fraction increased with prolonging the solid solution time. The true stress-strain curve obtained from the hot compression test showed the flow stress first increased to a maximum and then decreased to a steady state. It indicated that the dynamic competition took place between the working hardening and working softening during hot compression. Moreover, the main deformation mechanism was twining at strain of 0.08 for the as-solution alloy; with the increase of the strain, dynamic recrystallization (DRX) grains appeared at original grains and twins boundaries. Lots of nanoscale I-phase which pined and hindered dislocation precipitated within the matrix during hot compression process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-152

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai. Effect of precipitation on strength and ductility in a Mg-Zn-Y alloy. J. Alloys Comp. 550 (2013) 114-123.

DOI: 10.1016/j.jallcom.2012.09.027

Google Scholar

[2] A. Singh, H. Somekawa, T. Mukai. High temperature processing of Mg-Zn-Y alloys containing quasicrystal phase for high strength. Mater. Sci. Eng. A 528 (2011) 6647-6651.

DOI: 10.1016/j.msea.2011.05.001

Google Scholar

[3] H.Y. Yu, H.G. Yan, J.H. Chen, B. Su, Y. Zheng, Y.J. Shen, Z.J. Ma. Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys. J. Alloys Comp. 586 (2014) 757-765.

DOI: 10.1016/j.jallcom.2013.10.005

Google Scholar

[4] S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, W.Q. Wang. Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys. Trans. Nonferrous Met. Soc. China 21 (2011) 795-800.

DOI: 10.1016/s1003-6326(11)60783-8

Google Scholar

[5] J.Y. Lee, D.H. Kim, H.K. Lim, D.H. Kim. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys. Mater. Lett. 59 (2005) 3801-3805.

DOI: 10.1016/j.matlet.2005.06.052

Google Scholar

[6] H. Li, W.B. Du, S.B. Li, Z.H. Wang. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys. Mater. Des. 35 (2012) 259-265.

DOI: 10.1016/j.matdes.2011.10.002

Google Scholar

[7] F.S. Pierce, S.J. Poon, Q. Guo. Electron localization in metallic quasicrystals. Science 261 (1993) 737-739.

DOI: 10.1126/science.261.5122.737

Google Scholar

[8] A. Galiyeva, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49 (2001) 1199-1207.

DOI: 10.1016/s1359-6454(01)00020-9

Google Scholar

[9] É. Martin, R.K. Mishra, J.J. Jonas, Effect of twinning on recrystallization textures in deformed magnesium alloy AZ31. Phil. Mag. 91 (2011) 3613-3626.

DOI: 10.1080/14786435.2011.588613

Google Scholar

[10] J. Su, M. Sanjari, A.S.H. Kabir, I. H. Jung, S. Yue. Dynamic recrystallization mechanisms during high speed rolling of Mg-3Al-2Zn alloy sheets. Scrip. Mater. 113 (2016) 198-201.

DOI: 10.1016/j.scriptamat.2015.10.040

Google Scholar

[11] S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater. Sci. Eng. A 527 (2009) 52-60.

DOI: 10.1016/j.msea.2009.08.062

Google Scholar

[12] K.H. Kim, B.C. Suh, J.H. Bae, M.S. Shim, S. Kim, N.J. Kim. Microstructure and texture evolution of Mg alloy during twin-roll casting and subsequent hot rolling. Scrip. Mater. 63 (2010) 716-720.

DOI: 10.1016/j.scriptamat.2009.12.010

Google Scholar

[13] G.Y. Yuan, Y. Liu, C. Lu, W.J. Ding. Effect of quasicrystal and Laves phases on strength and ductility of as-extruded and heat treated Mg-Zn-Gd-based alloys. Mater. Sci. Eng. A. 472 (2008) 75-82.

DOI: 10.1016/j.msea.2007.03.016

Google Scholar

[14] A. Singh, M. Watanabe, A. Kato, A.P. Tsai. Twinning and the orientation relationships of icosahedral phase with the magnesium matrix. Acta. Mater. 53 (2005) 4733-4742.

DOI: 10.1016/j.actamat.2005.06.026

Google Scholar

[15] Q.F. Wang, W.B. Du, K. Liu, Z.H. Wang, S.B. Li, K. Wen. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys. Mater. Sci. Eng. A 581 (2013) 31-38.

DOI: 10.1016/j.msea.2013.05.055

Google Scholar

[16] K. Liu, W.B. Du, Q.F. Wang, Z.H. Wang, S. B. Li. Mechanical properties and ageing response of the Mg-6Zn-1Er alloy produced by a new method of RPW process. Mater. Sci. Eng. A 556 (2012) 567-572.

DOI: 10.1016/j.msea.2012.07.028

Google Scholar

[17] H. Li, W.B. Du, S.B. Li, Z.H. Wang, Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys. Mater. Des. 35(2012)259-265.

DOI: 10.1016/j.matdes.2011.10.002

Google Scholar

[18] D.H. Bae, S.H. Kim, D.H. Kim, W.T. Kim. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater. 50 (2002) 2343.

DOI: 10.1016/s1359-6454(02)00067-8

Google Scholar

[19] Q.F. Wang, W.B. Du, K. Liu, Z.H. Wang, S.B. Li, K. Wen. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys. Mater. Sci. Eng. A. 581(2013)31-38.

DOI: 10.1016/j.msea.2013.05.055

Google Scholar

[20] S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima. Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater. Sci. Eng. A, 527 (2009) 52-60.

DOI: 10.1016/j.msea.2009.08.062

Google Scholar

[21] Z.Q. Sheng, R. Shivpuri. Modeling flow stress of magnesium alloys at elevated temperature. Mater. Sci. Eng. A, 419(2006)202-208.

DOI: 10.1016/j.msea.2005.12.020

Google Scholar

[22] L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 55(2007) 3899.

DOI: 10.1016/j.actamat.2007.03.006

Google Scholar

[23] B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, F.S. Pan. Dynamic recrystallization behavior and hot workability of Mg-2. 0Zn-0. 3Zr-0. 9Y alloy by using hot compression test. Mater. Des. 53(2014) 357-365.

DOI: 10.1016/j.matdes.2013.07.016

Google Scholar

[24] H. Huang, Y. Tian, G.Y. Yuan. Formation mechanism of quasicrystals at the nanoscale during hot compression of Mg alloys. Scrip. Mater., 78-79(2014) 61-64.

DOI: 10.1016/j.scriptamat.2014.01.035

Google Scholar

[25] I.J. Kim a, D.H. Bae b, D.H. Kim. Precipitates in a Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase. Mater. Sci. Eng. A, 359(2003)315-318.

DOI: 10.1016/s0921-5093(03)00352-6

Google Scholar

[26] J.A. Valle, M.T. Perez-Prado, O.A. Ruano. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater. Sci. Eng. A, 355(2003) 68-78.

DOI: 10.1016/s0921-5093(03)00043-1

Google Scholar