A High Strength and Toughness Mg-Y-Ni Alloy with a Long-Period Stacking Ordered Structure

Article Preview

Abstract:

Mg-5Y-3Ni-0.2Zr (wt. %) and Mg-5Y-3Zn-0.2Zr (wt. %) alloys with LPSO structure have been designed and fabricated. The microstructure and mechanical property of both the extruded alloys have been comparatively studied. The results showed that the alloy with enough Ni exhibited higher elongation due to the high volume fraction of LPSO structure with excellent compatible deformation capability. The presence of deformation kinks with high kink angle demonstrated the capability of LPSO structure to accommodate the deformation, which could greatly increase the ductility and the toughness of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-178

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure, Mater. Trans. 48 (2007) 2986-2992.

DOI: 10.2320/matertrans.mer2007142

Google Scholar

[2] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase, Intermetallics 18 (2010) 1079-1085.

DOI: 10.1016/j.intermet.2010.02.011

Google Scholar

[3] T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling, Scripta Mater. 59 (2008) 1155-1158.

DOI: 10.1016/j.scriptamat.2008.08.001

Google Scholar

[4] Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Mater. 55 (2006) 453-456.

DOI: 10.1016/j.scriptamat.2006.05.011

Google Scholar

[5] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy, Acta Mater. 59 (2011) 3646-3658.

DOI: 10.1016/j.actamat.2011.02.038

Google Scholar

[6] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282-6393.

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[7] X.H. Shao, Z.Q. Yang, X.L. Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure, Acta Mater. 58 (2010) 4760-4771.

DOI: 10.1016/j.actamat.2010.05.012

Google Scholar

[8] K. Hagihara, N. Yokotani, Y. Umakoshi, Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics 18 (2010) 267–276.

DOI: 10.1016/j.intermet.2009.07.014

Google Scholar

[9] J.K. Kim, S. Sandlӧbes, D. Raabe, On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015) 414-423.

DOI: 10.1016/j.actamat.2014.09.036

Google Scholar

[10] T.Y. Kwak, H.K. Lim , W.J. Kim, Hot compression behavior of the ignition- resistant Mg-5Y-2. 5Zn-1. 2Ca alloy with long-period stacking ordered structures, J Alloy. Compd. 632 (2015) 417-428.

DOI: 10.1016/j.jallcom.2014.12.275

Google Scholar

[11] M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-Typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1 Alloy, Mater. Trans. JIM. 47 (2006).

DOI: 10.2320/matertrans.47.1264

Google Scholar

[12] H. Ma, L. Shi, J. Xu, E. Ma, J. Mater. Accommodation of large plastic strains and defect accumulation in nanocrystalline Ni grains, J. Mater. Res. 22 (2007) 2241-2253.

DOI: 10.1557/jmr.2007.0279

Google Scholar

[13] Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scr. Mater. 55 (2006) 453-456.

DOI: 10.1016/j.scriptamat.2006.05.011

Google Scholar

[14] S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, W.Q. Wang, Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys, Trans. Nonferr. Metal. Soc. 21 (2011) 795–800.

DOI: 10.1016/s1003-6326(11)60783-8

Google Scholar

[15] Luo Suqin, Experimental and Theoretical Investigation of Solid Solution Strengthening and Second Phase Strengthening in Mg-Zn-Zr-Y Alloys: [D]. Chongqing: Univ. of Chongqing, 2011.

Google Scholar

[16] X.Y. Yang, H.M. Miura, T. Sakai, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation, Mater, Trans, 44 (2003) 197-203.

DOI: 10.2320/matertrans.44.197

Google Scholar

[17] É. Martin, R.K. Mishra, J.J. Jonas, Deformation structures and recrystallization in magnesium alloys, in: F. Czerwinski (Ed. ), Magnesium Alloys-Design, Processing and Properties, InTech Press, Rijeka, 2011, pp.21-42.

DOI: 10.5772/13023

Google Scholar