[1]
Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure, Mater. Trans. 48 (2007) 2986-2992.
DOI: 10.2320/matertrans.mer2007142
Google Scholar
[2]
K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase, Intermetallics 18 (2010) 1079-1085.
DOI: 10.1016/j.intermet.2010.02.011
Google Scholar
[3]
T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling, Scripta Mater. 59 (2008) 1155-1158.
DOI: 10.1016/j.scriptamat.2008.08.001
Google Scholar
[4]
Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Mater. 55 (2006) 453-456.
DOI: 10.1016/j.scriptamat.2006.05.011
Google Scholar
[5]
M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy, Acta Mater. 59 (2011) 3646-3658.
DOI: 10.1016/j.actamat.2011.02.038
Google Scholar
[6]
K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282-6393.
DOI: 10.1016/j.actamat.2010.07.050
Google Scholar
[7]
X.H. Shao, Z.Q. Yang, X.L. Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure, Acta Mater. 58 (2010) 4760-4771.
DOI: 10.1016/j.actamat.2010.05.012
Google Scholar
[8]
K. Hagihara, N. Yokotani, Y. Umakoshi, Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics 18 (2010) 267–276.
DOI: 10.1016/j.intermet.2009.07.014
Google Scholar
[9]
J.K. Kim, S. Sandlӧbes, D. Raabe, On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015) 414-423.
DOI: 10.1016/j.actamat.2014.09.036
Google Scholar
[10]
T.Y. Kwak, H.K. Lim , W.J. Kim, Hot compression behavior of the ignition- resistant Mg-5Y-2. 5Zn-1. 2Ca alloy with long-period stacking ordered structures, J Alloy. Compd. 632 (2015) 417-428.
DOI: 10.1016/j.jallcom.2014.12.275
Google Scholar
[11]
M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-Typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1 Alloy, Mater. Trans. JIM. 47 (2006).
DOI: 10.2320/matertrans.47.1264
Google Scholar
[12]
H. Ma, L. Shi, J. Xu, E. Ma, J. Mater. Accommodation of large plastic strains and defect accumulation in nanocrystalline Ni grains, J. Mater. Res. 22 (2007) 2241-2253.
DOI: 10.1557/jmr.2007.0279
Google Scholar
[13]
Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scr. Mater. 55 (2006) 453-456.
DOI: 10.1016/j.scriptamat.2006.05.011
Google Scholar
[14]
S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, W.Q. Wang, Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys, Trans. Nonferr. Metal. Soc. 21 (2011) 795–800.
DOI: 10.1016/s1003-6326(11)60783-8
Google Scholar
[15]
Luo Suqin, Experimental and Theoretical Investigation of Solid Solution Strengthening and Second Phase Strengthening in Mg-Zn-Zr-Y Alloys: [D]. Chongqing: Univ. of Chongqing, 2011.
Google Scholar
[16]
X.Y. Yang, H.M. Miura, T. Sakai, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation, Mater, Trans, 44 (2003) 197-203.
DOI: 10.2320/matertrans.44.197
Google Scholar
[17]
É. Martin, R.K. Mishra, J.J. Jonas, Deformation structures and recrystallization in magnesium alloys, in: F. Czerwinski (Ed. ), Magnesium Alloys-Design, Processing and Properties, InTech Press, Rijeka, 2011, pp.21-42.
DOI: 10.5772/13023
Google Scholar