Effects of Extrusion Ratio on Microstructures and Properties of Al-Cu-Mg-Ag-Ce-Er Alloy Wires

Article Preview

Abstract:

The Al-Cu-Mg-Ag-Ce-Er alloy wires with different extrusion ratio (λ=12, 25, 50, 100) were produced by hot extrusion at 450oC. The effects of extrusion ratio on the microstructures, tensile strength and elongation of Al-Cu-Mg-Ag-Ce-Er alloy wires were researched by means of OM, SEM, TEM and mechanical test.The results show that with the extrusion ratio increasing, the average grain size decreased from 83μm to 42μm, the Al2Cu, Al8Cu4Ce and Al8Cu4Er phases was broken gradually, and the homogeneousdistribution about these second-phases in the alloy wires increased. The tensile strength increased from 366MPa to 459MPa with extrusion ratio, and the elongation initially decreased and then increased with the increase of extrusion ratio. Dynamic recrystallization for Al-Cu-Mg-Ag-Ce-Er alloy occurred at different extrusion ratios. Withincreasing of extrusion ratio, the main nucleation mechanism of dynamic recrystallization changed from the sub-grain coalescence at lower extrusion ratioto the acceleration of second-phases for nucleation at higher extrusion ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-198

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bakavos D, Prangnell P B, Bes B, et al. The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8 temper, J. Materials Science and Engineering. A 491 (2008) 214.

DOI: 10.1016/j.msea.2008.03.014

Google Scholar

[2] Lumiey R. N, polmear I J. Scr Mater. 50 (2004) 1227.

Google Scholar

[3] Cho A, Bes B, Damage tolerance capability of an Al-Cu-Mg-Ag alloy (2139). Mater Sci Forum. 603-8 (2006) 519-521.

DOI: 10.4028/www.scientific.net/msf.519-521.603

Google Scholar

[4] Liu X. Y, Pan Q. L, Lu Z. L, Cao S. F, He Y. B, Li W. B, Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy, Mater Des. 31 (2010) 4392-4397.

DOI: 10.1016/j.matdes.2010.04.058

Google Scholar

[5] A. Garg, J. M. Howe, Convergent-beam electron diffraction analysis of the Ω phase in an Al-4. 0 Cu-0. 5 Mg-0. 5 Ag alloy, J. Acta Metallurgica et Materialia 39 (1991) 1939-(1946).

DOI: 10.1016/0956-7151(91)90162-t

Google Scholar

[6] K. M. Knowles, W. M. Stobbs, The structure of {111} age-hardening precipitates in Al-Cu-Mg-Ag alloys, J. Acta Crystall ographica, 44 (1988) 207-227.

DOI: 10.1107/s0108768187012308

Google Scholar

[7] J. H. Auld, Structure of a metastable precipitate in an Al-Cu-Mg-Ag alloy, J. Acta Crystall ographica, 28 (1972) 98.

Google Scholar

[8] Xiao D. H, Wang J. N, Ding D. Y, Chen S. P, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Journal of Alloys and Compounds, 352 (2003) 84-88.

DOI: 10.1016/s0925-8388(02)01162-3

Google Scholar

[9] Xiao D. H, Wang J. N, Chen S. P, Ding D. Y, Effect of Ce addition on microstructure and elevated temperature properties in Al-Cu-Mg alloy with high Cu/Mg ratio, J. Journal of the Chinese Rare Earth Society 21 (2003) 564−567.

DOI: 10.1016/s0925-8388(02)01162-3

Google Scholar

[10] Song M, Chen K. H, Huang L. P, Effects of Ce and Ti on the microstructures and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Rare Metals 26(1) (2007) 28−32.

DOI: 10.1016/s1001-0521(07)60023-0

Google Scholar

[11] Xiao D. H, Song M, Chen K. H, Huang B. Y, Effect of rare earth Yb addition on mechanical properties of Al-5. 3Cu-0. 8Mg-0. 6Ag alloy, J. Materials Science and Technology 23(10) (2007) 1156−1160.

DOI: 10.1179/174328407x213260

Google Scholar

[12] Van Dalen M. E, Karnesky R. A, Cabotaje J. R, Dunand D. C, Seidman D. N, Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates, J. Acta Materialia 57 (2009) 4081-4089.

DOI: 10.1016/j.actamat.2009.05.007

Google Scholar

[13] Nie Z. R, Li B. L, Wang W, Jin T. N, Huang H, Li H. M, Zou J. X, Zuo T. Y., Study on the erbium strengthened aluminum alloy, J. Materials Science Forum 546/549(2007) 623-628.

DOI: 10.4028/www.scientific.net/msf.546-549.623

Google Scholar

[14] Nie Z. R, Jin T. N, Zou J. X, et al. Development on research of advanced rare-earth aluminum alloy, J. The Chinese Journal of Nonferrous Metals 13(3) (2003) 509- 514.

Google Scholar

[15] Dong H. B, Huang Y. G, Flow properties of 6061 aluminum alloy processed by equal channel angular extrusion, J. Transactions of Materials and Heat Treatment 2 (2011) 70-74.

Google Scholar

[16] Cheng. X, Szaraz. Z, Trojanova. Z, et al. Evaluating plastic anisotropy in two aluminum alloys processed by equal-channel angular pressing, J. Mater SciEng A 497 (1/2) (2008) 206-211.

DOI: 10.1016/j.msea.2008.06.045

Google Scholar

[17] Wong M. K, Kao W. P, Lui C. P, et al. Cyclic de-formation of ultrafine-grained aluminum, J. Acta Mater 55 (2) (2007) 715-725.

DOI: 10.1016/j.actamat.2006.09.002

Google Scholar

[18] George R, Kashyap K. T, Dilip S., Dark-field optical microscopy-a new technique to study recrystallization in commercial purity aluminium, J. Materials Characterization 58(10) (2007) 1016-1018.

DOI: 10.1016/j.matchar.2006.08.003

Google Scholar

[19] Kumar N, Mishra R. S., Thermal stability of friction stir processed ultrafine grained Al-Mg-Sc alloy, J. Materials Characterization 74 (2012) 1-10.

DOI: 10.1016/j.matchar.2012.09.003

Google Scholar