[1]
I.G. Farbenindustrie, Process for improving the mechanical properties of magnesium alloys. British Patent 359, 425. (1931).
Google Scholar
[2]
Z.W. Chen, W.Q. Jie, R.J. Zhang, Superheat treatment of Al–7Si–0. 55 Mg alloy melt, Mater. Lett. 59 (2005) 2183-2185.
DOI: 10.1016/j.matlet.2004.08.047
Google Scholar
[3]
J. Piątkowski, The effect of Al-17wt. % Si alloy melt overheating on solidification process and microstructure evolution, Sol. State Phen. 176 (2011) 29-34.
DOI: 10.4028/www.scientific.net/ssp.176.29
Google Scholar
[4]
D.G. Eskin, Primary solidification in aluminum alloys under melt overheating, Mater. Sci. Forum 331 (2000) 155-160.
DOI: 10.4028/www.scientific.net/msf.331-337.155
Google Scholar
[5]
M.C. Gui, J. Jia, Q. C Li, Influences of liquid superheating treatment on the structure and mechanical properties of hypereutectic Al-Si alloys, J. Aeronaut. Mater. 16 (1996) 26-31.
Google Scholar
[6]
D. Qiu, M.X. Zhang, J.A. Taylor, H.M. Fu, P.M. Kelly, A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys, Acta Mater. 55 (2007) 1863-1871.
DOI: 10.1016/j.actamat.2006.10.047
Google Scholar
[7]
Z.H. Gu, H.Y. Wang, N. Zheng, M. Zha, L.L. Jiang, W. Wang, Q.C. Jiang. Gu Z H, Wang H Y, Zheng, Effect of melt superheating treatment on the cast microstructure of Mg–1. 5Si–1Zn alloy, J. Mater. Sci. 43 (2008) 980-984.
DOI: 10.1007/s10853-007-2275-5
Google Scholar
[8]
I. Brodova, D. Bashylkov, A. Manukhin, E. Rozhicyna, P. Popel, V. Manov, Disperse structure forming in rapidly quenched Al-Hf alloy, Mater. Sci. Eng. A 304 (2001) 544-547.
DOI: 10.1016/s0921-5093(00)01512-4
Google Scholar
[9]
Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou, Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, J. Alloy. Compd. 399 (2005) 106-109.
DOI: 10.1016/j.jallcom.2005.03.015
Google Scholar
[10]
F.S. Yin, X.F. Sun, J.G. Li, H. R Guan, Z. Q Hu, Effects of melt treatment on the cast structure of M963 superalloy, Scr. Mater. 48 (2003) 425-429.
DOI: 10.1016/s1359-6462(02)00446-3
Google Scholar
[11]
C.S. Wang, J. Zhang, L. Liu, H.Z. Fu, Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment, J. Alloy. Compd. 508 (2010) 440-445.
DOI: 10.1016/j.jallcom.2010.08.086
Google Scholar
[12]
J. Zhang, B. Li, M.M. Zou, C.S. Wang, L. Liu, H.Z. Fu, Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment, J. Alloy. Compd. 484 (2009) 753-756.
DOI: 10.1016/j.jallcom.2009.05.035
Google Scholar
[13]
L. Novák, L. Potocký, A. Lovas, É. Kisdi-Koszó, J. Takács, Influence of the melt overheating and the cooling rate on the magnetic properties of Fe83. 4B16. 6 amorphous alloys, J. Magn. Magn. Mater. 19 (1980) 149-151.
DOI: 10.1016/0304-8853(80)90579-x
Google Scholar
[14]
L. Ratke, S. Diefenbach, Liquid immiscible alloys, Mater. Sci. Eng. R 15 (1995) 263-347.
Google Scholar
[15]
H. Xie, G.C. Yang, P.Q. La, W.X. Hao, J.F. Fan, W.M. Liu, L.J. Xu, Microstructure and wear performance of Ni-20 wt. % Pb hypomonotectic alloys, Mater. Charact. 52 (2004) 153–158.
DOI: 10.1016/j.matchar.2004.04.008
Google Scholar
[16]
I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, X.J. Liu, R. Kainuma, K. Ishida, Microstructural evolution of alloy powder for electronic materials with liquid miscibility gap, J. Electron. Mater. 38 (2009) 2-9.
DOI: 10.1007/s11664-008-0537-x
Google Scholar
[17]
J.D. Livingston, Magnetization of Superconducting Cu–Pb Alloys, J. Appl. Phys. 39 (1968) 3836-3843.
DOI: 10.1063/1.1656862
Google Scholar
[18]
J. Wecker, R. von Helmolt, L. Schultz, K. Samwer, Giant magnetoresistance in melt spun Cu-Co alloys, Appl. Phys. Lett. 62 (1993) 1985-(1987).
DOI: 10.1063/1.109511
Google Scholar
[19]
H. Yasuda, I. Ohnaka, S. Fujimoto, A. Sugiyama, Y. Hayashi, M. Yamamoto, M. Yamamoto, A. Tsuchiyama, T. Nakano, K. Uesugi, K. Kishio, Fabrication of porous aluminum with deep pores by using Al–In monotectic solidification and electrochemical etching, Mater. Lett. 58 (2004).
DOI: 10.1016/j.matlet.2003.07.032
Google Scholar
[20]
C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297 (2002) 990-993.
DOI: 10.1126/science.1073050
Google Scholar
[21]
B.Q. Ma, J.Q. Li, Z. Xu, Z.J. Peng, Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method, Appl. Energ. 132 (2014) 568-574.
DOI: 10.1016/j.apenergy.2014.07.054
Google Scholar
[22]
R. Dai, S.G. Zhang, Y.B. Li, X. Guo, J.G. Li, Phase separation and formation of core-type microstructure of Al–65. 5 mass% Bi immiscible alloys, J. Alloy. Compd. 509 (2011) 2289-2293.
DOI: 10.1016/j.jallcom.2010.10.203
Google Scholar
[23]
M.Y. Li, P. Jia, X.F. Sun, H.R. Geng, M. Zuo, D.G. Zhao, Liquid–liquid phase equilibrium and core–shell structure formation in immiscible Al–Bi–Sn alloys, Appl. phys. A 122 (2016) 1-6.
DOI: 10.1007/s00339-016-9819-y
Google Scholar
[24]
C. Wu, M.Y. Li, P. Jia, R.X. Liu, S.J. Cui, H.R. Geng, Solidification of immiscible Al75Bi9Sn16 alloy with different cooling rates, J. Alloy. Compd. 688 (2016) 18-22.
DOI: 10.1016/j.jallcom.2016.06.275
Google Scholar
[25]
P. Jia, H.R. Geng, Y.J. Ding, M.Y. Li, M.X. Wang, S. Zhang, Liquid structure feature of Zn–Bi alloys with resistivity and viscosity methods, J. Mol. Liq. 214 (2016) 70-76.
DOI: 10.1016/j.molliq.2015.12.004
Google Scholar
[26]
R Liu, P. Jia, M.Y. Li, H.R. Geng, J.F. Leng, Structure transition of Sn57Bi43 melt and its thermodynamic and kinetic characteristics, Mater. Lett. 145 (2015) 108-110.
DOI: 10.1016/j.matlet.2015.01.090
Google Scholar
[27]
W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications Ltd, Switzerland, (1986).
Google Scholar