Effect of Melt Overheating Treatment on the Melt Structure and Solidified Structures of Al75Bi9Sn16 Immiscible Alloy

Article Preview

Abstract:

In this paper, the liquid phase separation and solidification process of the Al75Bi9Sn16 immiscible alloy were studied with calorimetric and resistivity methods to make the melt superheated treatment process. The impact of melt overheating treatment (MOT) on the phase constitution and solidification microstructures were investigated using X-Ray diffraction (XRD) and field emission scanning electron microscope (FESEM) to determine the structural sensitivity to the melt superheated degree, and find a new strategy for improving the forming ability of the core-shell structure of the Al75Bi9Sn16 alloy. The results show that: the liquid phase separation and precipitation of primary (Sn) phase occur in 1039K-880K and 460K-403K; the core-shell structure with Sn-Bi-rich core and Al-rich shell can be formed under conventional casting conditions; the melt overheating treatment (MOT) can promote the formation of core-shell structure by increasing solidification time t0 and decreasing the average solidification rate v.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-230

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.G. Farbenindustrie, Process for improving the mechanical properties of magnesium alloys. British Patent 359, 425. (1931).

Google Scholar

[2] Z.W. Chen, W.Q. Jie, R.J. Zhang, Superheat treatment of Al–7Si–0. 55 Mg alloy melt, Mater. Lett. 59 (2005) 2183-2185.

DOI: 10.1016/j.matlet.2004.08.047

Google Scholar

[3] J. Piątkowski, The effect of Al-17wt. % Si alloy melt overheating on solidification process and microstructure evolution, Sol. State Phen. 176 (2011) 29-34.

DOI: 10.4028/www.scientific.net/ssp.176.29

Google Scholar

[4] D.G. Eskin, Primary solidification in aluminum alloys under melt overheating, Mater. Sci. Forum 331 (2000) 155-160.

DOI: 10.4028/www.scientific.net/msf.331-337.155

Google Scholar

[5] M.C. Gui, J. Jia, Q. C Li, Influences of liquid superheating treatment on the structure and mechanical properties of hypereutectic Al-Si alloys, J. Aeronaut. Mater. 16 (1996) 26-31.

Google Scholar

[6] D. Qiu, M.X. Zhang, J.A. Taylor, H.M. Fu, P.M. Kelly, A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys, Acta Mater. 55 (2007) 1863-1871.

DOI: 10.1016/j.actamat.2006.10.047

Google Scholar

[7] Z.H. Gu, H.Y. Wang, N. Zheng, M. Zha, L.L. Jiang, W. Wang, Q.C. Jiang. Gu Z H, Wang H Y, Zheng, Effect of melt superheating treatment on the cast microstructure of Mg–1. 5Si–1Zn alloy, J. Mater. Sci. 43 (2008) 980-984.

DOI: 10.1007/s10853-007-2275-5

Google Scholar

[8] I. Brodova, D. Bashylkov, A. Manukhin, E. Rozhicyna, P. Popel, V. Manov, Disperse structure forming in rapidly quenched Al-Hf alloy, Mater. Sci. Eng. A 304 (2001) 544-547.

DOI: 10.1016/s0921-5093(00)01512-4

Google Scholar

[9] Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou, Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, J. Alloy. Compd. 399 (2005) 106-109.

DOI: 10.1016/j.jallcom.2005.03.015

Google Scholar

[10] F.S. Yin, X.F. Sun, J.G. Li, H. R Guan, Z. Q Hu, Effects of melt treatment on the cast structure of M963 superalloy, Scr. Mater. 48 (2003) 425-429.

DOI: 10.1016/s1359-6462(02)00446-3

Google Scholar

[11] C.S. Wang, J. Zhang, L. Liu, H.Z. Fu, Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment, J. Alloy. Compd. 508 (2010) 440-445.

DOI: 10.1016/j.jallcom.2010.08.086

Google Scholar

[12] J. Zhang, B. Li, M.M. Zou, C.S. Wang, L. Liu, H.Z. Fu, Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment, J. Alloy. Compd. 484 (2009) 753-756.

DOI: 10.1016/j.jallcom.2009.05.035

Google Scholar

[13] L. Novák, L. Potocký, A. Lovas, É. Kisdi-Koszó, J. Takács, Influence of the melt overheating and the cooling rate on the magnetic properties of Fe83. 4B16. 6 amorphous alloys, J. Magn. Magn. Mater. 19 (1980) 149-151.

DOI: 10.1016/0304-8853(80)90579-x

Google Scholar

[14] L. Ratke, S. Diefenbach, Liquid immiscible alloys, Mater. Sci. Eng. R 15 (1995) 263-347.

Google Scholar

[15] H. Xie, G.C. Yang, P.Q. La, W.X. Hao, J.F. Fan, W.M. Liu, L.J. Xu, Microstructure and wear performance of Ni-20 wt. % Pb hypomonotectic alloys, Mater. Charact. 52 (2004) 153–158.

DOI: 10.1016/j.matchar.2004.04.008

Google Scholar

[16] I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, X.J. Liu, R. Kainuma, K. Ishida, Microstructural evolution of alloy powder for electronic materials with liquid miscibility gap, J. Electron. Mater. 38 (2009) 2-9.

DOI: 10.1007/s11664-008-0537-x

Google Scholar

[17] J.D. Livingston, Magnetization of Superconducting Cu–Pb Alloys, J. Appl. Phys. 39 (1968) 3836-3843.

DOI: 10.1063/1.1656862

Google Scholar

[18] J. Wecker, R. von Helmolt, L. Schultz, K. Samwer, Giant magnetoresistance in melt spun Cu-Co alloys, Appl. Phys. Lett. 62 (1993) 1985-(1987).

DOI: 10.1063/1.109511

Google Scholar

[19] H. Yasuda, I. Ohnaka, S. Fujimoto, A. Sugiyama, Y. Hayashi, M. Yamamoto, M. Yamamoto, A. Tsuchiyama, T. Nakano, K. Uesugi, K. Kishio, Fabrication of porous aluminum with deep pores by using Al–In monotectic solidification and electrochemical etching, Mater. Lett. 58 (2004).

DOI: 10.1016/j.matlet.2003.07.032

Google Scholar

[20] C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297 (2002) 990-993.

DOI: 10.1126/science.1073050

Google Scholar

[21] B.Q. Ma, J.Q. Li, Z. Xu, Z.J. Peng, Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method, Appl. Energ. 132 (2014) 568-574.

DOI: 10.1016/j.apenergy.2014.07.054

Google Scholar

[22] R. Dai, S.G. Zhang, Y.B. Li, X. Guo, J.G. Li, Phase separation and formation of core-type microstructure of Al–65. 5 mass% Bi immiscible alloys, J. Alloy. Compd. 509 (2011) 2289-2293.

DOI: 10.1016/j.jallcom.2010.10.203

Google Scholar

[23] M.Y. Li, P. Jia, X.F. Sun, H.R. Geng, M. Zuo, D.G. Zhao, Liquid–liquid phase equilibrium and core–shell structure formation in immiscible Al–Bi–Sn alloys, Appl. phys. A 122 (2016) 1-6.

DOI: 10.1007/s00339-016-9819-y

Google Scholar

[24] C. Wu, M.Y. Li, P. Jia, R.X. Liu, S.J. Cui, H.R. Geng, Solidification of immiscible Al75Bi9Sn16 alloy with different cooling rates, J. Alloy. Compd. 688 (2016) 18-22.

DOI: 10.1016/j.jallcom.2016.06.275

Google Scholar

[25] P. Jia, H.R. Geng, Y.J. Ding, M.Y. Li, M.X. Wang, S. Zhang, Liquid structure feature of Zn–Bi alloys with resistivity and viscosity methods, J. Mol. Liq. 214 (2016) 70-76.

DOI: 10.1016/j.molliq.2015.12.004

Google Scholar

[26] R Liu, P. Jia, M.Y. Li, H.R. Geng, J.F. Leng, Structure transition of Sn57Bi43 melt and its thermodynamic and kinetic characteristics, Mater. Lett. 145 (2015) 108-110.

DOI: 10.1016/j.matlet.2015.01.090

Google Scholar

[27] W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications Ltd, Switzerland, (1986).

Google Scholar