[1]
T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56(4) (2014) 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[2]
J. Zhang, Y.L. Deng, W. Yang, S.S. Hu, X.M. Zhang, Design of the multi-stage quenching process for 7050 aluminum alloy, Mater. Des. 56(4) (2014) 334-344.
DOI: 10.1016/j.matdes.2013.09.029
Google Scholar
[3]
A. Deschamps, Y. Bréchet, Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy, Mater. Sci. Eng., A 251(1-2) (1998) 200-207.
DOI: 10.1016/s0921-5093(98)00615-7
Google Scholar
[4]
A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A 280(1) (2000) 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[5]
S.D. Liu, X.M. Zhang, Z.B. Huang, J.H. You, Prediction of hardness of aluminum alloy 7055 by quench factor analysis, Mater. Sci. Forum 546-549 (2007) 881-884.
DOI: 10.4028/www.scientific.net/msf.546-549.881
Google Scholar
[6]
C.C. Zhu, J.Y. Luo, D.F. Li, Y. Zhong, Y. Li, Numerical simulation and experimental investigation of the aluminum alloy quenching-induced residual stress by considering the flow stress characteristic, J. Mech. Eng. 46(22) (2010) 41-46.
DOI: 10.3901/jme.2010.22.041
Google Scholar
[7]
R. Kopun, L. Škerget, M. Hriberšek, D.S. Zhang, B. Stauder, D. Greif, Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures, Appl. Therm. Eng. 65(1-2) (2014) 74-84.
DOI: 10.1016/j.applthermaleng.2013.12.058
Google Scholar
[8]
G.W. Zhou, Z.Q. Zheng, H. Li, Predicting properties for secondary aging of 7055 Al alloy based on artificial neural networks, Chin. J. Nonferr. Met. 16(9) (2006) 1583-1588.
Google Scholar
[9]
Y.L. Liu, Q.P. Zhong, Z. Zheng, Predictive model based on artificial neural net for fatigue performances of prior-corroded aluminum alloys, Acta Aeronaut. Astronaut. Sin. 22(2) (2001) 135-139.
Google Scholar
[10]
J.W. Evancho, J.T. Staley, Kinetics of precipitation in aluminum alloys during continuous cooling, Metall. Trans. 5(1) (1974) 43-47.
DOI: 10.1007/bf02642924
Google Scholar
[11]
J.T. Staley, Quench factor analysis of aluminium alloys, Mater. Sci. Technol. 3(11) (1987) 923-935.
Google Scholar
[12]
G.P. Dolan, R.J. Flynn, D.A. Tanner, J.S. Robinson, Quench factor analysis of aluminium alloys using the Jominy end quench technique, Mater. Sci. Technol. 21(6) (2005) 687-692.
DOI: 10.1179/174328405x43081
Google Scholar
[13]
J.T. Staley, R.D. Doherty, A.P. Jaworski, Improved model to predict properties of aluminum alloy products after continuous cooling, Metall. Trans. A 24(11) (1993) 2417-2427.
DOI: 10.1007/bf02646521
Google Scholar
[14]
M. Tiryakioğlu, J.S. Robinson, P.D. Eason, On the quench sensitivity of 7010 aluminum alloy forgings in the overaged condition, Mater. Sci. Eng., A 618 (2014) 22-28.
DOI: 10.1016/j.msea.2014.09.002
Google Scholar
[15]
S.D. Liu, X.M. Zhang, J.H. You, Z.B. Huang, C. Zhang, X.Y. Zhang, TTP curve of 7055 aluminum alloy and its application, Chin. J. Nonferr. Met. 16(12) (2006) 2034-(2039).
Google Scholar
[16]
G.P. Dolan, J.S. Robinson, Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis, J. Mater. Process. Technol. 153-154(32) (2004) 346-351.
DOI: 10.1016/j.jmatprotec.2004.04.065
Google Scholar
[17]
B.C. Shang, Z.M. Yin, G. Wang, B. Liu, Z.Q. Huang, Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Mater. Des. 32(7) (2011) 3818-3822.
DOI: 10.1016/j.matdes.2011.03.016
Google Scholar
[18]
R.J. Flynn, J.S. Robinson, The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy, J. Mater. Process. Technol. 153-154 (2004) 674-680.
DOI: 10.1016/j.jmatprotec.2004.04.133
Google Scholar
[19]
L. Kang, G. Zhao, N. Tian, K. Liu, Research on a new method of axial temperature field determination during aluminum alloy end quenching [J]. Light Alloy Fabr. Technol. 41(10) (2013) 45-49.
Google Scholar
[20]
J.W. Newkirk, D.S. Mackenzie, The Jominy end quench for light-weight alloy development, J. Mater. Eng. Perform. 9(4) (2000) 408-415.
DOI: 10.1361/105994900770345809
Google Scholar
[21]
L. Kang, G. Zhao, N. Tian, H. Fu, Measurement of TTP curves of 7050 aluminum alloy by conductivity, Adv. Mater. Res. 1095 (2015) 168-174.
DOI: 10.4028/www.scientific.net/amr.1095.168
Google Scholar
[22]
L. Chen, Y.N. Yu, Phase transformations in metals and alloys, Higher Education Press, Beijing, 2013, pp.233-235.
Google Scholar
[23]
Y.N. Yu, Metallography principle, second ed., Metallurgical Industry Press, Beijing, 2013, pp.620-625.
Google Scholar
[24]
D. Feng, Metal physics (Volume II) phase transformation, Science Press, Beijing, 2000, pp.180-187.
Google Scholar
[25]
X.M. Zhang, W.J. Liu, S.D. Liu, Y.B. Yuan, Y.L. Deng, TTP curve of aluminum alloy 7050, Chin. J. Nonferr. Met. 19(5) (2009) 861-868.
Google Scholar
[26]
P.Y. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, B.H. Zhu, F. Wang, H.W. Liu, Hardenability characteristic and microstructure of 7050 Al alloy, Chin. J. Nonferr. Met. 21(3) (2011) 513-521.
Google Scholar
[27]
C.E. Bates, G.E. Totten, Procedure for quenching media selection to maximise tensile properties and minimise distortion in aluminium alloy parts, Heat Treat. Met. 15(4) (1988) 89-97.
Google Scholar