[1]
A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A, 280 (2000) 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[2]
L.M. Wu, W.H. Wang, Y.F. Hsu, T. Shan, L.M. Wu, W.H. Wang, Y.F. Hsu, T. Shan, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy, J. Alloys Compd., 456 (2008) 163-169.
DOI: 10.1016/j.jallcom.2007.02.054
Google Scholar
[3]
Y. Zuo, J. Cui, J. Dong, F. Yu, Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy, J. Alloys Compd., 402 (2005) 149-155.
DOI: 10.1016/j.jallcom.2005.04.135
Google Scholar
[4]
S. Maitra, G.C. English, Mechanism of localized corrosion of 7075 alloy plate, Metall. Mater. Trans., A 12 (1981) 535-541.
DOI: 10.1007/bf02648553
Google Scholar
[5]
M.E. Karabin, F. Barlat, R.W. Schultz, Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve, J. Mater. Process. Technol., 189 (2007) 45-57.
DOI: 10.1016/j.jmatprotec.2007.01.008
Google Scholar
[6]
R.T. Shuey, F. Barlat, M.E. Karabin, D.J. Chakrabarti, Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy, Metall. Mater. Trans., A 40 (2009) 365-376.
DOI: 10.1007/s11661-008-9703-2
Google Scholar
[7]
B. Sarkar, M. Marek, E. Starke, The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys, Metall. Trans. A, 12 (1981) 1939-(1943).
DOI: 10.1007/bf02643806
Google Scholar
[8]
J. Wloka, T. Hack, S. Virtanen, Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys, Corros. Sci., 49 (2007) 1437-1449.
DOI: 10.1016/j.corsci.2006.06.033
Google Scholar
[9]
H. Zhang, L. Li, D. Yuan, D. Peng, Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures, Mater. Charact., 58 (2007) 168-173.
DOI: 10.1016/j.matchar.2006.04.012
Google Scholar
[10]
S.C. Bergsma, M.E. Kassner, X. Li, M.A. Wall, Strengthening in the new aluminum alloy AA 6069, Mater. Sci. Eng. A, 254 (1998) 112-118.
DOI: 10.1016/s0921-5093(98)00701-1
Google Scholar
[11]
H.J. Mcqueen, O.C. Celliers, Application of hot workability studies to extrusion processing: Part II. Microstructural development and extrusion of Al, Al-Mg, AND Al-Mg-Mn Alloys, Can. Metall. Q., 35 (1996) 305-319.
DOI: 10.1016/s0008-4433(96)00011-0
Google Scholar
[12]
J.R. Davis, Corrosion of aluminum and aluminum alloys, Corrosion of Aluminum & Aluminum Alloys, (1999).
DOI: 10.31399/asm.tb.caaa.9781627082990
Google Scholar
[13]
B. Cina, Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking, 3856584 (1974).
Google Scholar
[14]
L. Hai, Z. Ziqiao, W. Zhixiu, Influence of heat treatment regime on microstructures and fracture characteristics of 7055 Al alloy containing Ag [J], Rare. Metal. Mat. Eng, 4 (2005) 025.
Google Scholar
[15]
J.S. Zhang, Z.G. Chen, J.K. Ren, J.Q. Chen, W. Xiang, F. Liang, Effect of new thermomechanical treatment on microstructure and properties of Al-Zn-Mg-Cu aluminum alloy, T. Nonferr. Metal. soc, 25 (2015) 910-917.
Google Scholar
[16]
B. Yan, H. -M. Gao, W. Lin, C. Neng, Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal test, T. Nonferr. Metal. soc, 20 (2010) 1392-1396.
DOI: 10.1016/s1003-6326(09)60310-1
Google Scholar
[17]
E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 47 (2005) 3202-3215.
DOI: 10.1016/j.corsci.2005.05.046
Google Scholar
[18]
J. Waldman, H. Sulinski, H. Markus, The effect of ingot processing treatments on the grain size and properties of Al alloy 7075, Metall. Mater. Trans., B 5(1974) 573-584.
DOI: 10.1007/bf02644652
Google Scholar
[19]
H. Yoshida, Role of second phase particles and solute atoms in the grain refinement of a 7475 alloy sheet, J. Jpn. I. Met, 41 (1991) 331-337.
Google Scholar
[20]
R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, A. Atrens, Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy, Acta Mater., 52 (2004) 4727-4743.
DOI: 10.1016/j.actamat.2004.06.023
Google Scholar
[21]
A.F.O. Jr, M.C.D. Barros, K.R. Cardoso, D.N. Travessa, The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys, Mater. Sci. Eng. A, 379 (2004) 321-326.
DOI: 10.1016/j.msea.2004.02.052
Google Scholar
[22]
K. Stiller, P.J. Warren, V. Hansen, J. Angenete, J. Gjønnes, Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100°C and 150°C, Mater. Sci. Eng. A, 270 (1999) 55-63.
DOI: 10.1016/s0921-5093(99)00231-2
Google Scholar
[23]
X. Zhang, T.M. Devine, Factors That Influence Formation of AlF3 Passive Film on Aluminum in Li-Ion Battery Electrolytes with LiPF6, J. Electrochem. Soc., 153 (2006) B375-B383.
DOI: 10.1149/1.2218816
Google Scholar
[24]
J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci., 87 (2014) 150-155.
DOI: 10.1016/j.corsci.2014.06.022
Google Scholar
[25]
BUZZA D. W., ALKIRE R. C., Growth of corrosion pits on pure aluminium in 1M NaCl, J. Electrochem. Soc., (1995).
DOI: 10.1149/1.2044137
Google Scholar
[26]
G.S. Frankel, L. Stockert, F. Hunkeler, H. Boehni, Metastable Pitting of Stainless Steel, Corrosion -Houston Tx-, 43 (1987) 429-436.
DOI: 10.5006/1.3583880
Google Scholar
[27]
X. Zhao, G.S. Frankel, Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique, Corrosion Science, 49 (2007) 920-938.
DOI: 10.1016/j.corsci.2006.05.037
Google Scholar
[28]
I.N. The, G.H. Zhou, L.I. Zhi-Fang, D. Mei, Y.H. Guo, Color-metallographic analysis of the iron-rich phase, Journal of Inner Mongolia Polytechnic University, (2004).
Google Scholar
[29]
C. Ma, L. Hou, J. Zhang, L. Zhuang, Influence of thickness reduction per pass on strain, microstructures and mechanical properties of 7050 Al alloy sheet processed by asymmetric rolling, Mater. Sci. Eng., A, 650 (2015) 454-468.
DOI: 10.1016/j.msea.2015.10.059
Google Scholar
[30]
H. Hallberg, B. Svendsen, T. Kayser, M. Ristinmaa, Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu, Comp. Mater. sci, 84 (2014) 327-338.
DOI: 10.1016/j.commatsci.2013.12.021
Google Scholar
[31]
T.C. Tsai, T.H. Chuang, Role of grain size on the stress corrosion cracking of 7475 aluminum alloys, Mater. Sci. Eng. A, 225 (1997) 135-144.
DOI: 10.1016/s0921-5093(96)10840-6
Google Scholar
[32]
H.I. Aaronson, K.R. Kinsman, K.C. Russell, The volume free energy change associated with precipitate nucleation, Scripta. Mater, 4 (1970) 101-106.
DOI: 10.1016/0036-9748(70)90172-9
Google Scholar
[33]
A. Deschamps, Y. Brechet, Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress, Acta Mater., 47 (1998) 293-305.
DOI: 10.1016/s1359-6454(98)00296-1
Google Scholar
[34]
J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, J. Zhang, Precipitates and the evolution of grain structures during double-step rolling of high-strength aluminum alloyand related properties, Acta. Metall. Sin, 52(9) (2016) 1105-1114.
Google Scholar
[35]
R.E. Sanders, E.A. Starke, The effect of intermediate thermomechanical treatments on the fatigue properties of a 7050 aluminum alloy, Metall. Mater. Trans. A, 9 (1978) 1087-1100.
DOI: 10.1007/bf02652213
Google Scholar
[36]
Y. Lang, Y. Cai, H. Cui, J. Zhang, Effect of strain-induced precipitation on the low angle grain boundary in AA7050 aluminum alloy, Mater. Des., 32 (2011) 4241-4246.
DOI: 10.1016/j.matdes.2011.04.025
Google Scholar
[37]
R.Z.T. Z.T. Wang, Handbook of Aluminium Alloy and its Working, Central South University Press, Changsha, (2000).
Google Scholar
[38]
Y.C. Lin, J.L. Zhang, G. Liu, Y.J. Liang, Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy, Mater. Des., 83 (2015) 866-875.
DOI: 10.1016/j.matdes.2015.06.029
Google Scholar
[39]
J.H. Blind, Strain-induced corrosion cracking of low-alloy steels in LWR systems — case histories and identification of conditions leading to susceptibility, Nucl. Eng. des., 91 (1986) 305–330.
DOI: 10.1016/0029-5493(86)90084-1
Google Scholar