Improvement of Mechanical Properties and Corrosion Resistance by Deformation Induced Precipitation in Al-Zn-Mg-Cu Alloy

Article Preview

Abstract:

A final thermomechanical treatment (FTMT) including peak aging and subsequent dynamic aging was proposed to prepare 7055 Al alloy sheets. The optimization was based on nine well-planned orthogonal experiments. Three main processing conditions in the thermomechanical treatment for obtaining the optimum synthetic properties of 7055 (i.e. preheating temperature, final rolling temperature and deformation degree) were investigated. It was shown that the final rolling temperature is the most important factor among the three parameters, and the optimum properties (yield strength: 651 MPa, ultimate tensile strength: 660 MPa) of 7055 Al alloy sheet can be gained with preheating at 140oC and 40% deformation at 170oC. With dynamic aging, grain boundary precipitates became discontinuous without much coarsening of matrix precipitates, while they were continuously distributed after T6 aging. The present optimal FTMT process can improve the intergranular / exfoliation corrosion resistance without sacrificing the strength compared to T6 tempering. The present FTMT process as a good alternative can produce high-strength Al alloy sheets with high strength and good corrosion resistance efficiently and economically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-190

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A, 280 (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[2] L.M. Wu, W.H. Wang, Y.F. Hsu, T. Shan, L.M. Wu, W.H. Wang, Y.F. Hsu, T. Shan, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy, J. Alloys Compd., 456 (2008) 163-169.

DOI: 10.1016/j.jallcom.2007.02.054

Google Scholar

[3] Y. Zuo, J. Cui, J. Dong, F. Yu, Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy, J. Alloys Compd., 402 (2005) 149-155.

DOI: 10.1016/j.jallcom.2005.04.135

Google Scholar

[4] S. Maitra, G.C. English, Mechanism of localized corrosion of 7075 alloy plate, Metall. Mater. Trans., A 12 (1981) 535-541.

DOI: 10.1007/bf02648553

Google Scholar

[5] M.E. Karabin, F. Barlat, R.W. Schultz, Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve, J. Mater. Process. Technol., 189 (2007) 45-57.

DOI: 10.1016/j.jmatprotec.2007.01.008

Google Scholar

[6] R.T. Shuey, F. Barlat, M.E. Karabin, D.J. Chakrabarti, Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy, Metall. Mater. Trans., A 40 (2009) 365-376.

DOI: 10.1007/s11661-008-9703-2

Google Scholar

[7] B. Sarkar, M. Marek, E. Starke, The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys, Metall. Trans. A, 12 (1981) 1939-(1943).

DOI: 10.1007/bf02643806

Google Scholar

[8] J. Wloka, T. Hack, S. Virtanen, Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys, Corros. Sci., 49 (2007) 1437-1449.

DOI: 10.1016/j.corsci.2006.06.033

Google Scholar

[9] H. Zhang, L. Li, D. Yuan, D. Peng, Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures, Mater. Charact., 58 (2007) 168-173.

DOI: 10.1016/j.matchar.2006.04.012

Google Scholar

[10] S.C. Bergsma, M.E. Kassner, X. Li, M.A. Wall, Strengthening in the new aluminum alloy AA 6069, Mater. Sci. Eng. A, 254 (1998) 112-118.

DOI: 10.1016/s0921-5093(98)00701-1

Google Scholar

[11] H.J. Mcqueen, O.C. Celliers, Application of hot workability studies to extrusion processing: Part II. Microstructural development and extrusion of Al, Al-Mg, AND Al-Mg-Mn Alloys, Can. Metall. Q., 35 (1996) 305-319.

DOI: 10.1016/s0008-4433(96)00011-0

Google Scholar

[12] J.R. Davis, Corrosion of aluminum and aluminum alloys, Corrosion of Aluminum & Aluminum Alloys, (1999).

DOI: 10.31399/asm.tb.caaa.9781627082990

Google Scholar

[13] B. Cina, Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking, 3856584 (1974).

Google Scholar

[14] L. Hai, Z. Ziqiao, W. Zhixiu, Influence of heat treatment regime on microstructures and fracture characteristics of 7055 Al alloy containing Ag [J], Rare. Metal. Mat. Eng, 4 (2005) 025.

Google Scholar

[15] J.S. Zhang, Z.G. Chen, J.K. Ren, J.Q. Chen, W. Xiang, F. Liang, Effect of new thermomechanical treatment on microstructure and properties of Al-Zn-Mg-Cu aluminum alloy, T. Nonferr. Metal. soc, 25 (2015) 910-917.

Google Scholar

[16] B. Yan, H. -M. Gao, W. Lin, C. Neng, Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal test, T. Nonferr. Metal. soc, 20 (2010) 1392-1396.

DOI: 10.1016/s1003-6326(09)60310-1

Google Scholar

[17] E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 47 (2005) 3202-3215.

DOI: 10.1016/j.corsci.2005.05.046

Google Scholar

[18] J. Waldman, H. Sulinski, H. Markus, The effect of ingot processing treatments on the grain size and properties of Al alloy 7075, Metall. Mater. Trans., B 5(1974) 573-584.

DOI: 10.1007/bf02644652

Google Scholar

[19] H. Yoshida, Role of second phase particles and solute atoms in the grain refinement of a 7475 alloy sheet, J. Jpn. I. Met, 41 (1991) 331-337.

Google Scholar

[20] R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, A. Atrens, Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy, Acta Mater., 52 (2004) 4727-4743.

DOI: 10.1016/j.actamat.2004.06.023

Google Scholar

[21] A.F.O. Jr, M.C.D. Barros, K.R. Cardoso, D.N. Travessa, The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys, Mater. Sci. Eng. A, 379 (2004) 321-326.

DOI: 10.1016/j.msea.2004.02.052

Google Scholar

[22] K. Stiller, P.J. Warren, V. Hansen, J. Angenete, J. Gjønnes, Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100°C and 150°C, Mater. Sci. Eng. A, 270 (1999) 55-63.

DOI: 10.1016/s0921-5093(99)00231-2

Google Scholar

[23] X. Zhang, T.M. Devine, Factors That Influence Formation of AlF3 Passive Film on Aluminum in Li-Ion Battery Electrolytes with LiPF6, J. Electrochem. Soc., 153 (2006) B375-B383.

DOI: 10.1149/1.2218816

Google Scholar

[24] J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci., 87 (2014) 150-155.

DOI: 10.1016/j.corsci.2014.06.022

Google Scholar

[25] BUZZA D. W., ALKIRE R. C., Growth of corrosion pits on pure aluminium in 1M NaCl, J. Electrochem. Soc., (1995).

DOI: 10.1149/1.2044137

Google Scholar

[26] G.S. Frankel, L. Stockert, F. Hunkeler, H. Boehni, Metastable Pitting of Stainless Steel, Corrosion -Houston Tx-, 43 (1987) 429-436.

DOI: 10.5006/1.3583880

Google Scholar

[27] X. Zhao, G.S. Frankel, Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique, Corrosion Science, 49 (2007) 920-938.

DOI: 10.1016/j.corsci.2006.05.037

Google Scholar

[28] I.N. The, G.H. Zhou, L.I. Zhi-Fang, D. Mei, Y.H. Guo, Color-metallographic analysis of the iron-rich phase, Journal of Inner Mongolia Polytechnic University, (2004).

Google Scholar

[29] C. Ma, L. Hou, J. Zhang, L. Zhuang, Influence of thickness reduction per pass on strain, microstructures and mechanical properties of 7050 Al alloy sheet processed by asymmetric rolling, Mater. Sci. Eng., A, 650 (2015) 454-468.

DOI: 10.1016/j.msea.2015.10.059

Google Scholar

[30] H. Hallberg, B. Svendsen, T. Kayser, M. Ristinmaa, Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu, Comp. Mater. sci, 84 (2014) 327-338.

DOI: 10.1016/j.commatsci.2013.12.021

Google Scholar

[31] T.C. Tsai, T.H. Chuang, Role of grain size on the stress corrosion cracking of 7475 aluminum alloys, Mater. Sci. Eng. A, 225 (1997) 135-144.

DOI: 10.1016/s0921-5093(96)10840-6

Google Scholar

[32] H.I. Aaronson, K.R. Kinsman, K.C. Russell, The volume free energy change associated with precipitate nucleation, Scripta. Mater, 4 (1970) 101-106.

DOI: 10.1016/0036-9748(70)90172-9

Google Scholar

[33] A. Deschamps, Y. Brechet, Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress, Acta Mater., 47 (1998) 293-305.

DOI: 10.1016/s1359-6454(98)00296-1

Google Scholar

[34] J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, J. Zhang, Precipitates and the evolution of grain structures during double-step rolling of high-strength aluminum alloyand related properties, Acta. Metall. Sin, 52(9) (2016) 1105-1114.

Google Scholar

[35] R.E. Sanders, E.A. Starke, The effect of intermediate thermomechanical treatments on the fatigue properties of a 7050 aluminum alloy, Metall. Mater. Trans. A, 9 (1978) 1087-1100.

DOI: 10.1007/bf02652213

Google Scholar

[36] Y. Lang, Y. Cai, H. Cui, J. Zhang, Effect of strain-induced precipitation on the low angle grain boundary in AA7050 aluminum alloy, Mater. Des., 32 (2011) 4241-4246.

DOI: 10.1016/j.matdes.2011.04.025

Google Scholar

[37] R.Z.T. Z.T. Wang, Handbook of Aluminium Alloy and its Working, Central South University Press, Changsha, (2000).

Google Scholar

[38] Y.C. Lin, J.L. Zhang, G. Liu, Y.J. Liang, Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy, Mater. Des., 83 (2015) 866-875.

DOI: 10.1016/j.matdes.2015.06.029

Google Scholar

[39] J.H. Blind, Strain-induced corrosion cracking of low-alloy steels in LWR systems — case histories and identification of conditions leading to susceptibility, Nucl. Eng. des., 91 (1986) 305–330.

DOI: 10.1016/0029-5493(86)90084-1

Google Scholar