Effect of Doping Concentrations on Properties of Nb Doped ZnO (NZO) Ceramics Targets

Article Preview

Abstract:

Nb doped ZnO (NZO) ceramic targets were prepared by sintering in air for 3 hours. The morphologies, structure, densification behavior, mechanical and electrical properties of the sintered ceramic targets with different doping concentrations were investigated. The optimal doping concentration was obtained. The results indicated that the sintered NZO ceramic targets with doping amount of 1wt.% (1wt% Nb2O5) had optimum comprehensive properties, which was corresponding to an electrical resistivity of 1.87×10-2Ω·cm, a relative density of 99.1%, a Vickers hardness of 320MPa and a bending strength of 72.8MPa. The NZO ceramic target has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1804-1811

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Yu, X.M. Yu, J. J. Zhang, and H. J. Pan, Gradient Al-doped ZnO multi-buffer layers: effect on the photovoltaic properties of organic solar cells, Materials Letters, vol. 161, p.624–627, (2015).

DOI: 10.1016/j.matlet.2015.09.017

Google Scholar

[2] S. Benramache, B. Benhaoua, O. Belahssen, The crystalline structure, conductivity and optical properties of Co-doped ZnO thin films, Optik, 125 (2014) 5864-5868.

DOI: 10.1016/j.ijleo.2014.07.055

Google Scholar

[3] M. Kodu, T. Arroval, T. Avarmaa, R. Jaaniso, I. Kink, S. Leinberg, K. Savi, M. Timusk, Effect of oxygen on active Al concentration in ZnO: Al thin films made by PLD, Appl Surf Sci, 320 (2014) 756-763.

DOI: 10.1016/j.apsusc.2014.08.138

Google Scholar

[4] R.S. Wu, W.J. Zhang, H. Zhang, D.Y. Song, Q. Ma, J. Liu, X.B. Ma, L. Zhang, L. Zhang, H.Y. Song, Investigation of aluminum and gallium co-doped ZnO powders and their effects on the properties of targets, Mat Sci Semicon Proc, 19 (2014) 24-31.

DOI: 10.1016/j.mssp.2013.11.034

Google Scholar

[5] J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, H.H. Chun, Low resistivity of Ni-Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power, Appl Surf Sci, 293 (2014) 55-61.

DOI: 10.1016/j.apsusc.2013.12.071

Google Scholar

[6] J. Liu, W.J. Zhang, D.Y. Song, Q. Ma, L. Zhang, H. Zhang, X.B. Ma, H.Y. Song, Gallium-doped zinc oxide targets fabricated by sintering: Impact of target quality on sputtered thin film properties, Mat Sci Semicon Proc, 27 (2014) 1-11.

DOI: 10.1016/j.mssp.2014.06.005

Google Scholar

[7] N. Neves, A. Lagoa, J. Calado, A.M.B. do Rego, E. Fortunato, R. Martins, I. Ferreira, Al-doped ZnO nanostructured powders by emulsion detonation synthesis - Improving materials for high quality sputtering targets manufacturing, J Eur Ceram Soc, 34 (2014).

DOI: 10.1016/j.jeurceramsoc.2014.02.019

Google Scholar

[8] C.Y. Tsay, W.T. Hsu, Sol-gel derived undoped and boron-doped ZnO semiconductor thin films: Preparation and characterization, Ceram Int, 39 (2013) 7425-7432.

DOI: 10.1016/j.ceramint.2013.02.086

Google Scholar

[9] C. Weigand, R. Crisp, C. Ladam, T. Furtak, R. Collins, J. Grepstad, H. Weman, Electrical, optical and structural properties of Al-doped ZnO thin films grown on GaAs(111)B substrates by pulsed laser deposition, Thin Solid Films, 545 (2013) 124-129.

DOI: 10.1016/j.tsf.2013.07.052

Google Scholar

[10] Akazawa H. Double layer structures of transparent conductive oxide suitable for solar cells: Ga-doped ZnO on undoped ZnO Thin Solid Films, 526 (2012), p.195–200.

DOI: 10.1016/j.tsf.2012.10.111

Google Scholar

[11] C.S. Wu, B.T. Lin, R.Y. Yang, Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes, Thin Solid Films, 519 (2011) 5106-5109.

DOI: 10.1016/j.tsf.2011.01.153

Google Scholar

[12] Shao Jing-zhen.Dong Wei-wei, Li Da, et a1.Metal—semi—conductor transition in Nb-doped ZnO thin films pre—pared by pulsed laser deposition[J].Thin solid films, 2010, 518: 5288-5291.

DOI: 10.1016/j.tsf.2010.04.068

Google Scholar

[13] Lin J M, Zhang Y Z, Ye Z Z, et a1.Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition[J].Applied Surface Science, 2009, 255:6460-6463.

DOI: 10.1016/j.apsusc.2009.01.002

Google Scholar

[14] Lu, L., et al., Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity. Solar Energy Materials and Solar Cells, 2016. 149: pp.310-319.

DOI: 10.1016/j.solmat.2016.01.040

Google Scholar

[15] Wu, M., et al., Influence of oxygen pressure on the structural, electrical and optical properties of Nb-doped ZnO thin films prepared by pulsed laser deposition. Applied Surface Science, 2014. 292: pp.219-224.

DOI: 10.1016/j.apsusc.2013.11.119

Google Scholar

[16] Mohammadi, S., H. Abdizadeh and M.R. Golobostanfard, Effect of niobium doping on opto-electronic properties of sol–gel based nanostructured indium tin oxide thin films. Ceramics International, 2013. 39(4): pp.4391-4398.

DOI: 10.1016/j.ceramint.2012.11.027

Google Scholar

[17] Oh Kim, C., D. Hee Shin and S. Choi, Strongly-enhanced near-band-edge photoluminescence of Nb-implanted ZnO films. Journal of Crystal Growth, 2011. 326(1): pp.42-44.

DOI: 10.1016/j.jcrysgro.2011.01.048

Google Scholar

[18] Shao, J., et al., Metal-semiconductor transition in Nb-doped ZnO thin films prepared by pulsed laser deposition. Thin Solid Films, 2010. 518(18): pp.5288-5291.

DOI: 10.1016/j.tsf.2010.04.068

Google Scholar

[19] Lin, J.M., et al., Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition. Applied Surface Science, 2009. 255(13–14): pp.6460-6463.

DOI: 10.1016/j.apsusc.2009.01.002

Google Scholar

[20] Gupta, R.K., et al., Effect of substrate temperature on opto-electrical properties of Nb-doped In2O3 thin films. Journal of Crystal Growth, 2008. 310(19): pp.4336-4339.

DOI: 10.1016/j.jcrysgro.2008.07.043

Google Scholar

[21] GOKULAKRISHNAN, V., et al., Structural, Optical, and Electrical Properties of Nb-Doped ZnO Thin Films Prepared by Spray Pyrolysis Method. 2011. 40(12): pp.2382-2387.

DOI: 10.1007/s11664-011-1755-1

Google Scholar

[22] Cai X X, Pi C B, Shang F L, et al. Effect of Doping Concentrations on Properties of Ga-Ti Co-Doped ZnO (GTZO) Targets[C]/ 2016: 498-504.

DOI: 10.4028/www.scientific.net/msf.848.498

Google Scholar

[23] Pi C B, Cai X X, Xiao C, et al. Sintering of High Quality Titanium-Doped Zinc Oxide Ceramic Sputtering Target[J]. Key Engineering Materials, (2016).

DOI: 10.4028/www.scientific.net/kem.697.198

Google Scholar

[24] Xiao C, Zhang Z J, Gao Q Q, et al. Study of High-Density Zn-Doped Tungsten Trioxide Ceramic Targets[J]. Advanced Materials Research, 2013, 779-780: 182-186.

DOI: 10.4028/www.scientific.net/amr.779-780.182

Google Scholar

[25] Yang H T, Liu C Q, Zhang Z J, et al. Sintering of Ultrahigh Density and Highly Conductive ZnO-Ga2O3 Ceramic Targets[J]. Advanced Materials Research, 2013, 668: 670-674.

DOI: 10.4028/www.scientific.net/amr.668.670

Google Scholar

[26] N. Neves, R. Barros, E. Antunes, J. Calado, E. Fortunato, R. Martins, I. Ferreira, Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application, J Eur Ceram Soc, 32 (2012) 4381-4391.

DOI: 10.1016/j.jeurceramsoc.2012.08.007

Google Scholar