[1]
X. Yu, X.M. Yu, J. J. Zhang, and H. J. Pan, Gradient Al-doped ZnO multi-buffer layers: effect on the photovoltaic properties of organic solar cells, Materials Letters, vol. 161, p.624–627, (2015).
DOI: 10.1016/j.matlet.2015.09.017
Google Scholar
[2]
S. Benramache, B. Benhaoua, O. Belahssen, The crystalline structure, conductivity and optical properties of Co-doped ZnO thin films, Optik, 125 (2014) 5864-5868.
DOI: 10.1016/j.ijleo.2014.07.055
Google Scholar
[3]
M. Kodu, T. Arroval, T. Avarmaa, R. Jaaniso, I. Kink, S. Leinberg, K. Savi, M. Timusk, Effect of oxygen on active Al concentration in ZnO: Al thin films made by PLD, Appl Surf Sci, 320 (2014) 756-763.
DOI: 10.1016/j.apsusc.2014.08.138
Google Scholar
[4]
R.S. Wu, W.J. Zhang, H. Zhang, D.Y. Song, Q. Ma, J. Liu, X.B. Ma, L. Zhang, L. Zhang, H.Y. Song, Investigation of aluminum and gallium co-doped ZnO powders and their effects on the properties of targets, Mat Sci Semicon Proc, 19 (2014) 24-31.
DOI: 10.1016/j.mssp.2013.11.034
Google Scholar
[5]
J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, H.H. Chun, Low resistivity of Ni-Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power, Appl Surf Sci, 293 (2014) 55-61.
DOI: 10.1016/j.apsusc.2013.12.071
Google Scholar
[6]
J. Liu, W.J. Zhang, D.Y. Song, Q. Ma, L. Zhang, H. Zhang, X.B. Ma, H.Y. Song, Gallium-doped zinc oxide targets fabricated by sintering: Impact of target quality on sputtered thin film properties, Mat Sci Semicon Proc, 27 (2014) 1-11.
DOI: 10.1016/j.mssp.2014.06.005
Google Scholar
[7]
N. Neves, A. Lagoa, J. Calado, A.M.B. do Rego, E. Fortunato, R. Martins, I. Ferreira, Al-doped ZnO nanostructured powders by emulsion detonation synthesis - Improving materials for high quality sputtering targets manufacturing, J Eur Ceram Soc, 34 (2014).
DOI: 10.1016/j.jeurceramsoc.2014.02.019
Google Scholar
[8]
C.Y. Tsay, W.T. Hsu, Sol-gel derived undoped and boron-doped ZnO semiconductor thin films: Preparation and characterization, Ceram Int, 39 (2013) 7425-7432.
DOI: 10.1016/j.ceramint.2013.02.086
Google Scholar
[9]
C. Weigand, R. Crisp, C. Ladam, T. Furtak, R. Collins, J. Grepstad, H. Weman, Electrical, optical and structural properties of Al-doped ZnO thin films grown on GaAs(111)B substrates by pulsed laser deposition, Thin Solid Films, 545 (2013) 124-129.
DOI: 10.1016/j.tsf.2013.07.052
Google Scholar
[10]
Akazawa H. Double layer structures of transparent conductive oxide suitable for solar cells: Ga-doped ZnO on undoped ZnO Thin Solid Films, 526 (2012), p.195–200.
DOI: 10.1016/j.tsf.2012.10.111
Google Scholar
[11]
C.S. Wu, B.T. Lin, R.Y. Yang, Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes, Thin Solid Films, 519 (2011) 5106-5109.
DOI: 10.1016/j.tsf.2011.01.153
Google Scholar
[12]
Shao Jing-zhen.Dong Wei-wei, Li Da, et a1.Metal—semi—conductor transition in Nb-doped ZnO thin films pre—pared by pulsed laser deposition[J].Thin solid films, 2010, 518: 5288-5291.
DOI: 10.1016/j.tsf.2010.04.068
Google Scholar
[13]
Lin J M, Zhang Y Z, Ye Z Z, et a1.Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition[J].Applied Surface Science, 2009, 255:6460-6463.
DOI: 10.1016/j.apsusc.2009.01.002
Google Scholar
[14]
Lu, L., et al., Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity. Solar Energy Materials and Solar Cells, 2016. 149: pp.310-319.
DOI: 10.1016/j.solmat.2016.01.040
Google Scholar
[15]
Wu, M., et al., Influence of oxygen pressure on the structural, electrical and optical properties of Nb-doped ZnO thin films prepared by pulsed laser deposition. Applied Surface Science, 2014. 292: pp.219-224.
DOI: 10.1016/j.apsusc.2013.11.119
Google Scholar
[16]
Mohammadi, S., H. Abdizadeh and M.R. Golobostanfard, Effect of niobium doping on opto-electronic properties of sol–gel based nanostructured indium tin oxide thin films. Ceramics International, 2013. 39(4): pp.4391-4398.
DOI: 10.1016/j.ceramint.2012.11.027
Google Scholar
[17]
Oh Kim, C., D. Hee Shin and S. Choi, Strongly-enhanced near-band-edge photoluminescence of Nb-implanted ZnO films. Journal of Crystal Growth, 2011. 326(1): pp.42-44.
DOI: 10.1016/j.jcrysgro.2011.01.048
Google Scholar
[18]
Shao, J., et al., Metal-semiconductor transition in Nb-doped ZnO thin films prepared by pulsed laser deposition. Thin Solid Films, 2010. 518(18): pp.5288-5291.
DOI: 10.1016/j.tsf.2010.04.068
Google Scholar
[19]
Lin, J.M., et al., Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition. Applied Surface Science, 2009. 255(13–14): pp.6460-6463.
DOI: 10.1016/j.apsusc.2009.01.002
Google Scholar
[20]
Gupta, R.K., et al., Effect of substrate temperature on opto-electrical properties of Nb-doped In2O3 thin films. Journal of Crystal Growth, 2008. 310(19): pp.4336-4339.
DOI: 10.1016/j.jcrysgro.2008.07.043
Google Scholar
[21]
GOKULAKRISHNAN, V., et al., Structural, Optical, and Electrical Properties of Nb-Doped ZnO Thin Films Prepared by Spray Pyrolysis Method. 2011. 40(12): pp.2382-2387.
DOI: 10.1007/s11664-011-1755-1
Google Scholar
[22]
Cai X X, Pi C B, Shang F L, et al. Effect of Doping Concentrations on Properties of Ga-Ti Co-Doped ZnO (GTZO) Targets[C]/ 2016: 498-504.
DOI: 10.4028/www.scientific.net/msf.848.498
Google Scholar
[23]
Pi C B, Cai X X, Xiao C, et al. Sintering of High Quality Titanium-Doped Zinc Oxide Ceramic Sputtering Target[J]. Key Engineering Materials, (2016).
DOI: 10.4028/www.scientific.net/kem.697.198
Google Scholar
[24]
Xiao C, Zhang Z J, Gao Q Q, et al. Study of High-Density Zn-Doped Tungsten Trioxide Ceramic Targets[J]. Advanced Materials Research, 2013, 779-780: 182-186.
DOI: 10.4028/www.scientific.net/amr.779-780.182
Google Scholar
[25]
Yang H T, Liu C Q, Zhang Z J, et al. Sintering of Ultrahigh Density and Highly Conductive ZnO-Ga2O3 Ceramic Targets[J]. Advanced Materials Research, 2013, 668: 670-674.
DOI: 10.4028/www.scientific.net/amr.668.670
Google Scholar
[26]
N. Neves, R. Barros, E. Antunes, J. Calado, E. Fortunato, R. Martins, I. Ferreira, Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application, J Eur Ceram Soc, 32 (2012) 4381-4391.
DOI: 10.1016/j.jeurceramsoc.2012.08.007
Google Scholar