Structural, Electrical and Optical Properties of Ternary Al2xIn2(1-x)O3 Films Prepared by Metal Organic Chemical Vapor Deposition

Article Preview

Abstract:

New wide band gap semiconductors with tunable properties are desperately needed to meet the ever-increasing demands of photoelectric devices operating in the ultraviolet (UV) or even deep ultraviolet (DUV) region. In this study, the ternary aluminum indium oxide (Al2xIn2(1-x)O3) films with different Al compositions of x [Al/(Al+In) atomic ratio] were successfully grown on the α-Al2O3 (0001) substrates at 650 °C by metal organic chemical vapor deposition (MOCVD). The influence of Al content on the structural, compositional, electrical and optical properties of the obtained films was investigated in detail. The structural transition from polycrystalline structure of bixbyite In2O3 to amorphous was observed as the Al content increased. The lowest resistivity of 1.52×10-3 Ω·cm was obtained for the sample with x=0.2, along with the respective hall mobility and carrier concentration values of 12.87 cm2V-1s-1 and 2.27×1020 cm-3. The average visible transmittances of over 83% were demonstrated for all the samples. The calculated values of optical band gap for the films indicated continuous increase from 3.82 to 5.88 eV as the x value increased from 0.1 to 0.9. The Al2xIn2(1-x)O3 films with tunable properties may be potentially employed in the fabrication of transparent optoelectronic devices, such as UV detectors, transparent TFTs and short wavelength light-emitting devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1796-1803

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[2] S. Nakagomi, T. -a. Sato, Y. Takahashi, Y. Kokubun, Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction, Sensor. Actuat. A Phys. 232 (2015) 208-213.

DOI: 10.1016/j.sna.2015.06.011

Google Scholar

[3] Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Laser ablation synthesis and electron transport studies of tin oxide nanowires, Adv. Mater. 15 (2003) 1754-1757.

DOI: 10.1002/adma.200305439

Google Scholar

[4] S. Yoshida, S. Misawa, S. Gonda, Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy, J. Appl. Phys. 53 (1982) 6844-6848.

DOI: 10.1063/1.329998

Google Scholar

[5] W. Shan, J. Ager III, K. Yu, W. Walukiewicz, E. Haller, M. Martin, W. McKinney, W. Yang, Dependence of the fundamental band gap of AlxGa1-xN on alloy composition and pressure, J. Appl. Phys. 85 (1999) 8505-8507.

DOI: 10.1063/1.370696

Google Scholar

[6] W. Yang, S. Hullavarad, B. Nagaraj, I. Takeuchi, R. Sharma, T. Venkatesan, R. Vispute, H. Shen, Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors, Appl. Phys. Lett. 82 (2003) 3424.

DOI: 10.1063/1.1576309

Google Scholar

[7] S. Kumar, V. Gupte, K. Sreenivas, Structural and optical properties of magnetron sputtered MgxZn1-xO thin films, J. Phys. Condens. Mat. 18 (2006) 3343-3354.

DOI: 10.1088/0953-8984/18/13/002

Google Scholar

[8] Z.G. Yang, L.P. Zhu, Y.M. Guo, Z.Z. Ye, B.H. Zhao, Preparation and band-gap modulation in MgxNi1−xO thin films as a function of Mg contents, Thin Solid Films 519 (2011) 5174-5177.

DOI: 10.1016/j.tsf.2011.01.082

Google Scholar

[9] Y.H. Kwon, S.H. Chun, H.K. Cho, Controllable band-gap engineering of the ternary MgxNi1−xO thin films deposited by radio frequency magnetron sputtering for deep ultra-violet optical devices, Thin Solid Films 529 (2013) 417-420.

DOI: 10.1016/j.tsf.2012.06.021

Google Scholar

[10] C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater. 15 (2003) 143-146.

DOI: 10.1002/adma.200390029

Google Scholar

[11] H. Wu, D. Lu, K. Zhu, G. Xu, H. Wang, Crystalline and electronic structure of epitaxial γ-Al2O3 films, Physica B 413 (2013) 105-108.

Google Scholar

[12] R. Hill, Energy-gap variations in semiconductor alloys, J. Phys. C Solid State Phys. 7 (1974) 521-526.

DOI: 10.1088/0022-3719/7/3/009

Google Scholar

[13] F. Yang, J. Ma, X. Feng, L. Kong, Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition, J. Cryst. Growth 310 (2008) 4054-4057.

DOI: 10.1016/j.jcrysgro.2008.06.075

Google Scholar

[14] Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air, J. Appl. Phys. 94 (2003) 354-358.

DOI: 10.1063/1.1577819

Google Scholar

[15] J. Du, L. Huang, Z. Chen, D.J. Kang, A controlled method to synthesize hybrid In2O3/Ag nanochains and nanoparticles: surface-enhanced Raman scattering, J. Phys. Chem. C. 113 (2009) 9998-10004.

DOI: 10.1021/jp811131t

Google Scholar

[16] H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Energy gap and band alignment for (HfO2)x(Al2O3)1-x on (100) Si, Appl. Phys. Lett. 81 (2002) 376-378.

DOI: 10.1063/1.1492024

Google Scholar

[17] D. Zhang, H. Ma, Scattering mechanisms of charge carriers in transparent conducting oxide flms, Appl. Phys. A. 62 (1996), 487-492.

DOI: 10.1007/bf01567122

Google Scholar

[18] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma, Influence of annealing on the properties of ZnO: Ga films prepared by radio frequency magnetron sputtering, Thin Solid Films 483 (2005) 296-300.

DOI: 10.1016/j.tsf.2005.01.013

Google Scholar

[19] S. Salam, M. Islam, A. Akram, Sol-gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells, Thin Solid Films 529 (2013) 242-247.

DOI: 10.1016/j.tsf.2012.10.079

Google Scholar

[20] M. Ashokkumar, S. Muthukumaran, Microstructure and band gap tailoring of Zn0. 96-xCu0. 04CoxO (0≤x≤0. 04) nanoparticles prepared by co-precipitation method, J. Alloy. Compd. 587 (2014) 606-612.

DOI: 10.1016/j.jallcom.2013.10.246

Google Scholar

[21] J. Liu, H. Deng, L. Zhu, K. Zhang, X. Meng, H. Cao, P. Yang, J. Chu, Structure, optical and magnetic properties of Bi1−xEuxFeO3 films fabricated by pulsed laser deposition, Appl. Surf. Sci. 316 (2014) 78-81.

DOI: 10.1016/j.apsusc.2014.07.179

Google Scholar

[22] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, T. Kerdjac, Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates, Mat. Sci. Semicon. Proc. 28 (2014) 54-58.

DOI: 10.1016/j.mssp.2014.05.024

Google Scholar