[1]
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.
DOI: 10.1063/1.1992666
Google Scholar
[2]
S. Nakagomi, T. -a. Sato, Y. Takahashi, Y. Kokubun, Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction, Sensor. Actuat. A Phys. 232 (2015) 208-213.
DOI: 10.1016/j.sna.2015.06.011
Google Scholar
[3]
Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Laser ablation synthesis and electron transport studies of tin oxide nanowires, Adv. Mater. 15 (2003) 1754-1757.
DOI: 10.1002/adma.200305439
Google Scholar
[4]
S. Yoshida, S. Misawa, S. Gonda, Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy, J. Appl. Phys. 53 (1982) 6844-6848.
DOI: 10.1063/1.329998
Google Scholar
[5]
W. Shan, J. Ager III, K. Yu, W. Walukiewicz, E. Haller, M. Martin, W. McKinney, W. Yang, Dependence of the fundamental band gap of AlxGa1-xN on alloy composition and pressure, J. Appl. Phys. 85 (1999) 8505-8507.
DOI: 10.1063/1.370696
Google Scholar
[6]
W. Yang, S. Hullavarad, B. Nagaraj, I. Takeuchi, R. Sharma, T. Venkatesan, R. Vispute, H. Shen, Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors, Appl. Phys. Lett. 82 (2003) 3424.
DOI: 10.1063/1.1576309
Google Scholar
[7]
S. Kumar, V. Gupte, K. Sreenivas, Structural and optical properties of magnetron sputtered MgxZn1-xO thin films, J. Phys. Condens. Mat. 18 (2006) 3343-3354.
DOI: 10.1088/0953-8984/18/13/002
Google Scholar
[8]
Z.G. Yang, L.P. Zhu, Y.M. Guo, Z.Z. Ye, B.H. Zhao, Preparation and band-gap modulation in MgxNi1−xO thin films as a function of Mg contents, Thin Solid Films 519 (2011) 5174-5177.
DOI: 10.1016/j.tsf.2011.01.082
Google Scholar
[9]
Y.H. Kwon, S.H. Chun, H.K. Cho, Controllable band-gap engineering of the ternary MgxNi1−xO thin films deposited by radio frequency magnetron sputtering for deep ultra-violet optical devices, Thin Solid Films 529 (2013) 417-420.
DOI: 10.1016/j.tsf.2012.06.021
Google Scholar
[10]
C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater. 15 (2003) 143-146.
DOI: 10.1002/adma.200390029
Google Scholar
[11]
H. Wu, D. Lu, K. Zhu, G. Xu, H. Wang, Crystalline and electronic structure of epitaxial γ-Al2O3 films, Physica B 413 (2013) 105-108.
Google Scholar
[12]
R. Hill, Energy-gap variations in semiconductor alloys, J. Phys. C Solid State Phys. 7 (1974) 521-526.
DOI: 10.1088/0022-3719/7/3/009
Google Scholar
[13]
F. Yang, J. Ma, X. Feng, L. Kong, Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition, J. Cryst. Growth 310 (2008) 4054-4057.
DOI: 10.1016/j.jcrysgro.2008.06.075
Google Scholar
[14]
Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air, J. Appl. Phys. 94 (2003) 354-358.
DOI: 10.1063/1.1577819
Google Scholar
[15]
J. Du, L. Huang, Z. Chen, D.J. Kang, A controlled method to synthesize hybrid In2O3/Ag nanochains and nanoparticles: surface-enhanced Raman scattering, J. Phys. Chem. C. 113 (2009) 9998-10004.
DOI: 10.1021/jp811131t
Google Scholar
[16]
H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Energy gap and band alignment for (HfO2)x(Al2O3)1-x on (100) Si, Appl. Phys. Lett. 81 (2002) 376-378.
DOI: 10.1063/1.1492024
Google Scholar
[17]
D. Zhang, H. Ma, Scattering mechanisms of charge carriers in transparent conducting oxide flms, Appl. Phys. A. 62 (1996), 487-492.
DOI: 10.1007/bf01567122
Google Scholar
[18]
X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma, Influence of annealing on the properties of ZnO: Ga films prepared by radio frequency magnetron sputtering, Thin Solid Films 483 (2005) 296-300.
DOI: 10.1016/j.tsf.2005.01.013
Google Scholar
[19]
S. Salam, M. Islam, A. Akram, Sol-gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells, Thin Solid Films 529 (2013) 242-247.
DOI: 10.1016/j.tsf.2012.10.079
Google Scholar
[20]
M. Ashokkumar, S. Muthukumaran, Microstructure and band gap tailoring of Zn0. 96-xCu0. 04CoxO (0≤x≤0. 04) nanoparticles prepared by co-precipitation method, J. Alloy. Compd. 587 (2014) 606-612.
DOI: 10.1016/j.jallcom.2013.10.246
Google Scholar
[21]
J. Liu, H. Deng, L. Zhu, K. Zhang, X. Meng, H. Cao, P. Yang, J. Chu, Structure, optical and magnetic properties of Bi1−xEuxFeO3 films fabricated by pulsed laser deposition, Appl. Surf. Sci. 316 (2014) 78-81.
DOI: 10.1016/j.apsusc.2014.07.179
Google Scholar
[22]
A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, T. Kerdjac, Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates, Mat. Sci. Semicon. Proc. 28 (2014) 54-58.
DOI: 10.1016/j.mssp.2014.05.024
Google Scholar