Effects of Deposition Rate on the Structural, Morphological and Optical Properties of Brookite TiO2 Films Prepared by MOCVD

Article Preview

Abstract:

Compared to anatase and rutile TiO2, the brookite TiO2 (b-TiO2) is relatively seldom investigated, because it is difficult to be prepared. In order to explore a scientific and effective approach to prepare high quality b-TiO2 crystalline films, the effects of deposition rate on the properties of b-TiO2 films prepared on yttria-stabilized zirconia (YSZ) (110) substrates by metal organic chemical vapor deposition (MOCVD) were investigated in this study. The structural analyses indicated that the b-TiO2 film prepared with the lowest deposition rate of 1.25 Å/min had the best single crystalline quality for which the epitaxial relationship between the film and substrate was determined as b-TiO2(120) || YSZ(110) with an in-plane epitaxial relationship of b-TiO2[001]|| YSZ[001] and b-TiO2[20]||YSZ[10]. The RMS surface roughness of the obtained films decreased from 7.02 to 1.11 nm as the deposition rate decreased. The average transmittances of all the obtained b-TiO2 films exceeded 90% in the visible range. The optical band gaps increased from 3.54 to 3.63 eV as the deposition rate decreased. Apparently, the deposition rate has a significant influence on the structural, morphological and optical properties. Therefore, it provides a practicable way to manipulate such properties of b-TiO2 films for different applications in the field of transparent optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1787-1795

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Babelon, A. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot, M. Sacilotti, SEM and XPS studies of titanium dioxide thin films grown by MOCVD, Thin Solid Films, 322 (1998) 63-67.

DOI: 10.1016/s0040-6090(97)00958-9

Google Scholar

[2] X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, Metal-semiconductor-metal TiO[sub 2] ultraviolet detectors with Ni electrodes, Applied Physics Letters, 94 (2009) 123502.

DOI: 10.1063/1.3103288

Google Scholar

[3] H. Hu, X. Liu, C. Ding, Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation, Journal of Alloys and Compounds, 498 (2010) 172-178.

DOI: 10.1016/j.jallcom.2010.03.147

Google Scholar

[4] R. Narayanan, S.K. Seshadri, Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti–6Al–4V, Materials Chemistry and Physics, 106 (2007) 406-411.

DOI: 10.1016/j.matchemphys.2007.06.026

Google Scholar

[5] A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[6] X. Cheng, Y. Xu, S. Gao, H. Zhao, L. Huo, Ag nanoparticles modified TiO2 spherical heterostructures with enhanced gas-sensing performance, Sensors and Actuators B: Chemical, 155 (2011) 716-721.

DOI: 10.1016/j.snb.2011.01.036

Google Scholar

[7] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[8] Y. Kusumawati, M. Hosni, M.A. Martoprawiro, S. Cassaignon, T. Pauporté, Charge Transport and Recombination in TiO2 Brookite-Based Photoelectrodes, The Journal of Physical Chemistry C, 118 (2014) 23459-23467.

DOI: 10.1021/jp5047479

Google Scholar

[9] R. Zallen, M. Moret, The optical absorption edge of brookite TiO2, Solid State Communications, 137 (2006) 154-157.

DOI: 10.1016/j.ssc.2005.10.024

Google Scholar

[10] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, T. Nabatame, Rutile-type TiO2 thin film for high-k gate insulator, Thin Solid Films, 424 (2003) 224-228.

DOI: 10.1016/s0040-6090(02)01105-7

Google Scholar

[11] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, Applied Catalysis B: Environmental, 49 (2004) 1-14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[12] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008).

DOI: 10.1016/j.jphotochemrev.2007.12.003

Google Scholar

[13] M. Hamadanian, A. Sadeghi Sarabi, A. Mohammadi Mehra, V. Jabbari, Photocatalyst Cr-doped titanium oxide nanoparticles: Fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation, Materials Science in Semiconductor Processing, 21 (2014).

DOI: 10.1016/j.mssp.2013.12.024

Google Scholar

[14] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Physical chemistry chemical physics : PCCP, 14 (2012).

DOI: 10.1039/c2cp42484c

Google Scholar

[15] W.J. Youngblood, S. -H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk, Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell, Journal of the American Chemical Society, 131 (2009).

DOI: 10.1021/ja809108y

Google Scholar

[16] Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun, H. Xingfang, Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites, Journal of materials science letters, 19 (2000) 1445-1448.

DOI: 10.1023/a:1011010306699

Google Scholar

[17] B.I. Lee, X. Wang, R. Bhave, M. Hu, Synthesis of brookite TiO2 nanoparticles by ambient condition sol process, Materials Letters, 60 (2006) 1179-1183.

DOI: 10.1016/j.matlet.2005.10.114

Google Scholar

[18] A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J. -P. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, Journal of Materials Chemistry, 11 (2001) 1116-1121.

DOI: 10.1039/b100435m

Google Scholar

[19] E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, S. Lambert, F. Guillet, C. Marcel, C. Sanchez, Solid-State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dye-Sensitized Nanobrookite and Nanoanatase TiO2 Electrodes, European Journal of Inorganic Chemistry, 2008 (2008).

DOI: 10.1002/ejic.200701033

Google Scholar

[20] M. Koelsch, S. Cassaignon, J. Guillemoles, J. Jolivet, Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method, Thin Solid Films, 403 (2002) 312-319.

DOI: 10.1016/s0040-6090(01)01509-7

Google Scholar

[21] M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 366 (2000) 8-10.

DOI: 10.1016/s0040-6090(00)00862-2

Google Scholar

[22] A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano, Preparation of photocatalytic brookite thin films, Thin Solid Films, 515 (2007) 3527-3529.

DOI: 10.1016/j.tsf.2006.10.114

Google Scholar

[23] T. Zhu, S. -P. Gao, The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs, The Journal of Physical Chemistry C, 118 (2014) 11385-11396.

DOI: 10.1021/jp412462m

Google Scholar

[24] S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles, Superlattices and Microstructures, 82 (2015) 234-247.

DOI: 10.1016/j.spmi.2015.01.038

Google Scholar

[25] M. Landmann, E. Rauls, W. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, Journal of Physics: Condensed Matter, 24 (2012) 195503.

DOI: 10.1088/0953-8984/24/19/195503

Google Scholar

[26] Z. Zhang, M.G. Lagally, Atomistic processes in the early stages of thin-film growth, Science, 276 (1997) 377-383.

DOI: 10.1126/science.276.5311.377

Google Scholar