[1]
P. Babelon, A. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot, M. Sacilotti, SEM and XPS studies of titanium dioxide thin films grown by MOCVD, Thin Solid Films, 322 (1998) 63-67.
DOI: 10.1016/s0040-6090(97)00958-9
Google Scholar
[2]
X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, Metal-semiconductor-metal TiO[sub 2] ultraviolet detectors with Ni electrodes, Applied Physics Letters, 94 (2009) 123502.
DOI: 10.1063/1.3103288
Google Scholar
[3]
H. Hu, X. Liu, C. Ding, Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation, Journal of Alloys and Compounds, 498 (2010) 172-178.
DOI: 10.1016/j.jallcom.2010.03.147
Google Scholar
[4]
R. Narayanan, S.K. Seshadri, Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti–6Al–4V, Materials Chemistry and Physics, 106 (2007) 406-411.
DOI: 10.1016/j.matchemphys.2007.06.026
Google Scholar
[5]
A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63 (2008) 515-582.
DOI: 10.1016/j.surfrep.2008.10.001
Google Scholar
[6]
X. Cheng, Y. Xu, S. Gao, H. Zhao, L. Huo, Ag nanoparticles modified TiO2 spherical heterostructures with enhanced gas-sensing performance, Sensors and Actuators B: Chemical, 155 (2011) 716-721.
DOI: 10.1016/j.snb.2011.01.036
Google Scholar
[7]
B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[8]
Y. Kusumawati, M. Hosni, M.A. Martoprawiro, S. Cassaignon, T. Pauporté, Charge Transport and Recombination in TiO2 Brookite-Based Photoelectrodes, The Journal of Physical Chemistry C, 118 (2014) 23459-23467.
DOI: 10.1021/jp5047479
Google Scholar
[9]
R. Zallen, M. Moret, The optical absorption edge of brookite TiO2, Solid State Communications, 137 (2006) 154-157.
DOI: 10.1016/j.ssc.2005.10.024
Google Scholar
[10]
M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, T. Nabatame, Rutile-type TiO2 thin film for high-k gate insulator, Thin Solid Films, 424 (2003) 224-228.
DOI: 10.1016/s0040-6090(02)01105-7
Google Scholar
[11]
I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations, Applied Catalysis B: Environmental, 49 (2004) 1-14.
DOI: 10.1016/j.apcatb.2003.11.010
Google Scholar
[12]
U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008).
DOI: 10.1016/j.jphotochemrev.2007.12.003
Google Scholar
[13]
M. Hamadanian, A. Sadeghi Sarabi, A. Mohammadi Mehra, V. Jabbari, Photocatalyst Cr-doped titanium oxide nanoparticles: Fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation, Materials Science in Semiconductor Processing, 21 (2014).
DOI: 10.1016/j.mssp.2013.12.024
Google Scholar
[14]
B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Physical chemistry chemical physics : PCCP, 14 (2012).
DOI: 10.1039/c2cp42484c
Google Scholar
[15]
W.J. Youngblood, S. -H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk, Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell, Journal of the American Chemical Society, 131 (2009).
DOI: 10.1021/ja809108y
Google Scholar
[16]
Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun, H. Xingfang, Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites, Journal of materials science letters, 19 (2000) 1445-1448.
DOI: 10.1023/a:1011010306699
Google Scholar
[17]
B.I. Lee, X. Wang, R. Bhave, M. Hu, Synthesis of brookite TiO2 nanoparticles by ambient condition sol process, Materials Letters, 60 (2006) 1179-1183.
DOI: 10.1016/j.matlet.2005.10.114
Google Scholar
[18]
A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J. -P. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, Journal of Materials Chemistry, 11 (2001) 1116-1121.
DOI: 10.1039/b100435m
Google Scholar
[19]
E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, S. Lambert, F. Guillet, C. Marcel, C. Sanchez, Solid-State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dye-Sensitized Nanobrookite and Nanoanatase TiO2 Electrodes, European Journal of Inorganic Chemistry, 2008 (2008).
DOI: 10.1002/ejic.200701033
Google Scholar
[20]
M. Koelsch, S. Cassaignon, J. Guillemoles, J. Jolivet, Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method, Thin Solid Films, 403 (2002) 312-319.
DOI: 10.1016/s0040-6090(01)01509-7
Google Scholar
[21]
M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 366 (2000) 8-10.
DOI: 10.1016/s0040-6090(00)00862-2
Google Scholar
[22]
A. Di Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano, Preparation of photocatalytic brookite thin films, Thin Solid Films, 515 (2007) 3527-3529.
DOI: 10.1016/j.tsf.2006.10.114
Google Scholar
[23]
T. Zhu, S. -P. Gao, The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs, The Journal of Physical Chemistry C, 118 (2014) 11385-11396.
DOI: 10.1021/jp412462m
Google Scholar
[24]
S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles, Superlattices and Microstructures, 82 (2015) 234-247.
DOI: 10.1016/j.spmi.2015.01.038
Google Scholar
[25]
M. Landmann, E. Rauls, W. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, Journal of Physics: Condensed Matter, 24 (2012) 195503.
DOI: 10.1088/0953-8984/24/19/195503
Google Scholar
[26]
Z. Zhang, M.G. Lagally, Atomistic processes in the early stages of thin-film growth, Science, 276 (1997) 377-383.
DOI: 10.1126/science.276.5311.377
Google Scholar