Multi-Walled Carbon Nanotube-Alumina Nanocomposites with Dielectric Resonance-Induced Negative Permittivity Behavior

Article Preview

Abstract:

The multi-walled carbon nanotube/alumina (MWCNTs/Al2O3) nanocomposites embedded with the shortened MWCNTs were prepared by pressureless sintering. The microstructure, conductive behavior and complex permittivity spectra of the composites were investigated. It was found that MWCNTs, which were shortened to low aspect ratio by the controllable acid and ultrasonic treatment, uniformly dispersed in the Al2O3 matrix. A unique dielectric resonance-induced negative permittivity behavior was observed in the composites with high MWCNTs content. The negative magnitude of permittivity was small (~-50) in the testing frequency. The dielectric loss peaks being accompanied by dielectric resonance moved to the higher frequency with increasing MWCNTs content. Those composites underwent a capacitive-inductive transition with increasing frequency and their conductive mechanism was hopping conduction. This work is beneficial to explore the generation mechanism of negative permittivity, and will greatly facilitate the practical application of metamaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1764-1769

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000) 4184.

DOI: 10.1103/physrevlett.84.4184

Google Scholar

[2] K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency, J. Mater. Chem. C. 2 (2014) 1028-1033.

DOI: 10.1039/c3tc31906g

Google Scholar

[3] Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang and L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials, Adv. Mater. 2 (2012) 2349-2352.

DOI: 10.1002/adma.201200157

Google Scholar

[4] X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H. Gu, J. Yu, J. Liu and D. Ding, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels, ACS Appl. Mat. Interfaces. 7 (2015).

DOI: 10.1021/am5082183

Google Scholar

[5] J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D. P. Young, S. Wei and Z. Guo, Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties, Langmuir. 28 (2012) 10246-10255.

DOI: 10.1021/la302031f

Google Scholar

[6] C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun and M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon. 96 (2016) 678-684.

DOI: 10.1016/j.carbon.2015.10.003

Google Scholar

[7] C. R. Simovski, P. A. Belov, A. V. Atrashchenko and Y. S. Kivshar, Wire metamaterials: physics and applications, Adv. Mater. 24 (2012) 4229-4248.

DOI: 10.1002/adma.201200931

Google Scholar

[8] Z. Shi, S. Chen, K. Sun, X. Wang, R. Fan and X. Wang, Tunable radio-frequency negative permittivity in nickel-alumina natural, meta-composites, Appl. Phys. Lett. 104 (2014) 252908.

DOI: 10.1063/1.4885550

Google Scholar

[9] L. Wang, F. Ma, Q. Shi, H. Liu and X. Wang, Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites, Appl. Phys. Lett. 99 (2011) 207-215.

Google Scholar

[10] Z. Shi, R. Fan, Z. Zhang, K. Yan, X. Zhang, K. Sun, X. Liu and C. Wang, Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites, J. Mater. Chem.C. 1 (2013) 1633-1637.

DOI: 10.1039/c2tc00479h

Google Scholar

[11] Z. Shi, F. Mao, J. Wang, R. Fan and X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity, RSC Adv. 5 (2015) 107307-107312.

DOI: 10.1039/c5ra21808j

Google Scholar

[12] T. Tsutaoka, T. Kasagi, S. Yamamoto and K. Hatakeyama, Double negative electromagnetic property of granular composite materials in the microwave range, J. Magn. Magn. Mater. 383 (2015) 139-143.

DOI: 10.1016/j.jmmm.2014.10.103

Google Scholar

[13] T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto and K. Hatakeyama, Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites, Appl. Phys. Lett. 108 (2016) 191904.

DOI: 10.1063/1.4949560

Google Scholar

[14] M. Chen, R. Fan, M. Gao, S. Pan, M. Yu and Z. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold, J. Magn. Magn. Mater. 381(2015) 105-108.

DOI: 10.1016/j.jmmm.2014.12.067

Google Scholar

[15] C. Cheng, R. Fan, L. Qian, X. Wang, L. Dong and Y. Yin, Tunable negative permittivity behavior of random carbon/alumina composites in the radio frequency band, RSC Adv. 6 (2016) 87153-87158.

DOI: 10.1039/c6ra19591a

Google Scholar

[16] K. Oganisian and W. Strek, Observation of negative refraction in the graphene/ferrite composite. Phys, Status Solidi RRL. 8 (2014) 1011-1014.

DOI: 10.1002/pssr.201409435

Google Scholar

[17] J. P. Calame and J. Battat, Narrowband Microwave Dielectric Resonance and Negative Permittivity Behavior in Hydrogen-Fired Al2O3-CuO Composites, J. Am. Ceram. Soc. 89 (2006) 3865-3867.

DOI: 10.1111/j.1551-2916.2006.01306.x

Google Scholar

[18] Z. Shi, F. Mao, J. Wang, R. Fan and X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity, RSC Adv. 5(2015) 107307-107312.

DOI: 10.1039/c5ra21808j

Google Scholar

[19] J. Zhu, S. Wei, N. Haldolaarachchige, J. He, D. P. Young and Z. Guo, Very large magnetoresistive graphene disk with negative permittivity, Nanoscale. 4 (2012) 152-156.

DOI: 10.1039/c1nr11101a

Google Scholar

[20] B. Li, G. Sui and W. H. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity, Adv. Mater. 21 (2009) 4176-4180.

DOI: 10.1002/adma.200900653

Google Scholar

[21] Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang and K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal-ceramic composites, J. Mater. Chem. C. 2 (2014) 6752-6757.

DOI: 10.1039/c4tc01117a

Google Scholar

[22] X. Wang, Z. Shi, M. Chen, R. Fan, K. Yan, K. Sun, S. Pan and M. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method, J. Am. Ceram. Soc. 97 (2014) 3223-3229.

DOI: 10.1111/jace.13113

Google Scholar