Complex Permittivity and Permeability Spectra of Nickel/Polyphenylene Sulfide Composite in Radio Frequency Range

Article Preview

Abstract:

Due to the distinct electromagnetic properties, double negative materials have bright application prospect in many areas in the future. The nickel (Ni)/polyphenylene sulfide (PPS) composites were prepared by hot pressing Ni and PPS powders mixture. Microstructures, dielectric properties, and magnetic performances of the resulted composites were studied in detail. Once Ni contents exceeded the percolation threshold, the conductive networks would form and the conduction mechanism would change from hopping conduction to metal-like conduction. Due to the plasma oscillation of the free electrons within the conductive networks, negative permittivity appeared. Interestingly, circuit loops in the connected Ni particles induced by external electric field resulted in a diamagnetic phenomenon under high frequency for the composite with ferromagnetic Ni particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1757-1763

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ɛ and μ, Soviet Physics Uspekhi. (10)1968509-514.

DOI: 10.1070/pu1968v010n04abeh003699

Google Scholar

[2] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction, Science, (292)200177-79.

Google Scholar

[3] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz. Composite medium with simultaneously negative permeability and permittivity, PhysRevLett, (84)20004184-4187.

DOI: 10.1103/physrevlett.84.4184

Google Scholar

[4] W.J. Padilla, D.N. Basov, D.R. Smith. Negative refractive index metamaterials, Mater Today, (9) 200628-35.

Google Scholar

[5] S.A. Ramakrishna. Physics of negative refractive index materials, RepProg Phys, (68) 2005449-521.

Google Scholar

[6] B. Li, G. Sui, W.H. Zhong. Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity, AdvMater, (21) 20094176-4180.

DOI: 10.1002/adma.200900653

Google Scholar

[7] J.H. Zhu, X. Zhang, N. Haldolaarachchige, Q. Wang, Z.P. Luo, J. Ryu, D. Yong, S.Y. Wei, Z.H. Guo. Polypyrrole metacomposites with different carbon nanostructures, JMater Chem, (22) 20124996-5005.

DOI: 10.1039/c2jm14020a

Google Scholar

[8] C.B. Cheng, K.L. Yan, R.H. Fan, L. Qian, Z.D. Zhang, K. Sun, M. Chen. Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon, (96)2016678-684.

DOI: 10.1016/j.carbon.2015.10.003

Google Scholar

[9] X.C. Kou, X.C. Yao, J. Qiu. Negative permittivity and negative permeability of multi-walled carbon nanotubes/polypyrrole nanocomposites, OrgElectron, (38)201642-47.

DOI: 10.1016/j.orgel.2016.07.029

Google Scholar

[10] X.C. Yao, X.C. Kou, J. Qiu. Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability, Carbon, (107)2016261-267.

DOI: 10.1016/j.carbon.2016.05.055

Google Scholar

[11] L. Qian, L. Lu, R.H. Fan. Tunable negative permittivity based on phenolic resin and multi-walled carbon nanotubes, RSC Adv, (5)201516618-16621.

DOI: 10.1039/c4ra15413d

Google Scholar

[12] T. Kasagi, T. Tsutaoka, K. Hatakeyama. Negative permeability spectra in Permalloy granular composite materials, Appl PhysLett, (88)20061725021-1725023.

DOI: 10.1063/1.2198113

Google Scholar

[13] T. Tsutaoka, T. Kasagi, K. Hatakeyama. Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field, JApplPhys, (110)201105390901-05390912.

DOI: 10.1063/1.3626057

Google Scholar

[14] T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold, Appl Phys Lett, (102)20131819041-1819044.

DOI: 10.1063/1.4804379

Google Scholar

[15] T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama. Double negative electromagnetic property of granular composite materials in the microwave range, JMagnMagnMater, (383)2015139-143.

DOI: 10.1016/j.jmmm.2014.10.103

Google Scholar

[16] Z.C. Shi, R.H. Fan, K.L. Yan, K. Sun, M. Zhang, C.G. Wang X.F. Liu X.H. Zhang. Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability, AdvFunctMater, (23)20134123-4132.

DOI: 10.1002/adfm.201202895

Google Scholar

[17] Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L.T. Zheng, X.H. Zhang, L.W. Yin. Random composites of nickel networks supported by porous alumina toward double negative materials, AdvMater, (24)20122349-2352.

DOI: 10.1002/adma.201200157

Google Scholar

[18] M. Gao, Z.C. Shi, R.H. Fan, L. Qian, Z.D. Zhang, J.Y. Guo. High-Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents, JAm Ceram Soc, (95)201267-70.

DOI: 10.1111/j.1551-2916.2011.04963.x

Google Scholar

[19] Z.C. Shi, S.G. Chen, K. Sun, X. Wang, R.H. Fan, X.A. Wang. Tunable radio-frequency negative permittivity in nickel-alumina natural, meta-composites, ApplPhysLett, (104) 20142529081 -2529085.

DOI: 10.1063/1.4885550

Google Scholar

[20] K. Sun, R.H. Fan, Z.D. Zhang, K.L. Yan, X.H. Zhang, P.T. Xie M.X. Yu, S.B. Pan. The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl Phys Lett, (106)20151729021-1729024.

DOI: 10.1063/1.4918998

Google Scholar

[21] X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun S.B. Pan, M.X. Yu. Tunable electromagnetic properties in Co/Al2O3cermets prepared by wet chemical method, J AmCeramSoc, (97)20143223-3229.

Google Scholar

[22] M. Chen, M. Gao, F. Dang, N. Wang, B.Q. Zhang, S.B. Pan. Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering, CeramInt, (42) 20166444-6449.

DOI: 10.1016/j.ceramint.2016.01.072

Google Scholar

[23] G.C. Psarras. Hopping conductivity in polymer matrix–metal particles composites, ComposPart A-ApplS, (37)20061545-1553.

Google Scholar

[24] Q. Hou, K.L. Yan, R.H. Fan, Z.D. Zhang, M. Chen, K. Sun, C.B. Cheng. Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites, RSC Adv, (5) 20159472-9475.

DOI: 10.1039/c4ra15274c

Google Scholar