[1]
V. G. Veselago. The electrodynamics of substances with simultaneously negative values of ɛ and μ, Soviet Physics Uspekhi. (10)1968509-514.
DOI: 10.1070/pu1968v010n04abeh003699
Google Scholar
[2]
R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction, Science, (292)200177-79.
Google Scholar
[3]
D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz. Composite medium with simultaneously negative permeability and permittivity, PhysRevLett, (84)20004184-4187.
DOI: 10.1103/physrevlett.84.4184
Google Scholar
[4]
W.J. Padilla, D.N. Basov, D.R. Smith. Negative refractive index metamaterials, Mater Today, (9) 200628-35.
Google Scholar
[5]
S.A. Ramakrishna. Physics of negative refractive index materials, RepProg Phys, (68) 2005449-521.
Google Scholar
[6]
B. Li, G. Sui, W.H. Zhong. Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity, AdvMater, (21) 20094176-4180.
DOI: 10.1002/adma.200900653
Google Scholar
[7]
J.H. Zhu, X. Zhang, N. Haldolaarachchige, Q. Wang, Z.P. Luo, J. Ryu, D. Yong, S.Y. Wei, Z.H. Guo. Polypyrrole metacomposites with different carbon nanostructures, JMater Chem, (22) 20124996-5005.
DOI: 10.1039/c2jm14020a
Google Scholar
[8]
C.B. Cheng, K.L. Yan, R.H. Fan, L. Qian, Z.D. Zhang, K. Sun, M. Chen. Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach, Carbon, (96)2016678-684.
DOI: 10.1016/j.carbon.2015.10.003
Google Scholar
[9]
X.C. Kou, X.C. Yao, J. Qiu. Negative permittivity and negative permeability of multi-walled carbon nanotubes/polypyrrole nanocomposites, OrgElectron, (38)201642-47.
DOI: 10.1016/j.orgel.2016.07.029
Google Scholar
[10]
X.C. Yao, X.C. Kou, J. Qiu. Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability, Carbon, (107)2016261-267.
DOI: 10.1016/j.carbon.2016.05.055
Google Scholar
[11]
L. Qian, L. Lu, R.H. Fan. Tunable negative permittivity based on phenolic resin and multi-walled carbon nanotubes, RSC Adv, (5)201516618-16621.
DOI: 10.1039/c4ra15413d
Google Scholar
[12]
T. Kasagi, T. Tsutaoka, K. Hatakeyama. Negative permeability spectra in Permalloy granular composite materials, Appl PhysLett, (88)20061725021-1725023.
DOI: 10.1063/1.2198113
Google Scholar
[13]
T. Tsutaoka, T. Kasagi, K. Hatakeyama. Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field, JApplPhys, (110)201105390901-05390912.
DOI: 10.1063/1.3626057
Google Scholar
[14]
T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold, Appl Phys Lett, (102)20131819041-1819044.
DOI: 10.1063/1.4804379
Google Scholar
[15]
T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama. Double negative electromagnetic property of granular composite materials in the microwave range, JMagnMagnMater, (383)2015139-143.
DOI: 10.1016/j.jmmm.2014.10.103
Google Scholar
[16]
Z.C. Shi, R.H. Fan, K.L. Yan, K. Sun, M. Zhang, C.G. Wang X.F. Liu X.H. Zhang. Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability, AdvFunctMater, (23)20134123-4132.
DOI: 10.1002/adfm.201202895
Google Scholar
[17]
Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L.T. Zheng, X.H. Zhang, L.W. Yin. Random composites of nickel networks supported by porous alumina toward double negative materials, AdvMater, (24)20122349-2352.
DOI: 10.1002/adma.201200157
Google Scholar
[18]
M. Gao, Z.C. Shi, R.H. Fan, L. Qian, Z.D. Zhang, J.Y. Guo. High-Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents, JAm Ceram Soc, (95)201267-70.
DOI: 10.1111/j.1551-2916.2011.04963.x
Google Scholar
[19]
Z.C. Shi, S.G. Chen, K. Sun, X. Wang, R.H. Fan, X.A. Wang. Tunable radio-frequency negative permittivity in nickel-alumina natural, meta-composites, ApplPhysLett, (104) 20142529081 -2529085.
DOI: 10.1063/1.4885550
Google Scholar
[20]
K. Sun, R.H. Fan, Z.D. Zhang, K.L. Yan, X.H. Zhang, P.T. Xie M.X. Yu, S.B. Pan. The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range, Appl Phys Lett, (106)20151729021-1729024.
DOI: 10.1063/1.4918998
Google Scholar
[21]
X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun S.B. Pan, M.X. Yu. Tunable electromagnetic properties in Co/Al2O3cermets prepared by wet chemical method, J AmCeramSoc, (97)20143223-3229.
Google Scholar
[22]
M. Chen, M. Gao, F. Dang, N. Wang, B.Q. Zhang, S.B. Pan. Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering, CeramInt, (42) 20166444-6449.
DOI: 10.1016/j.ceramint.2016.01.072
Google Scholar
[23]
G.C. Psarras. Hopping conductivity in polymer matrix–metal particles composites, ComposPart A-ApplS, (37)20061545-1553.
Google Scholar
[24]
Q. Hou, K.L. Yan, R.H. Fan, Z.D. Zhang, M. Chen, K. Sun, C.B. Cheng. Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites, RSC Adv, (5) 20159472-9475.
DOI: 10.1039/c4ra15274c
Google Scholar