[1]
Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials [J]. Science, 2007, 317(5845): 1698-1702.
DOI: 10.1126/science.1133268
Google Scholar
[2]
Maeda T, Toyoda H, Igarashi N, et al. Development of super low iron-loss P/M soft magnetic material[J]. SEI TECHNICAL REVIEW-ENGLISH EDITION-, 2005, 60: 3.
Google Scholar
[3]
Shi Z, Fan R, Zhang Z, et al. Random composites of nickel networks supported by porous alumina toward double negative materials[J]. Advanced Materials, 2012, 24(17): 2349-2352.
DOI: 10.1002/adma.201200157
Google Scholar
[4]
Tajima S, Hattori T, Kondoh M, et al. Properties of high-density magnetic composite fabricated from iron powder coated with a new type phosphate insulator[J]. IEEE transactions on magnetics, 2005, 41(10): 3280-3282.
DOI: 10.1109/tmag.2005.854722
Google Scholar
[5]
Hou Q, Yan K, Fan R, et al. Negative permittivity in Fe–Si–Ni/epoxy magnetic composite materials at high-frequency [J]. Materials Chemistry and Physics, 2016, 170: 113-117.
DOI: 10.1016/j.matchemphys.2015.12.027
Google Scholar
[6]
Shi Z C, Fan R H, Zhang Z D, et al. Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites [J]. Applied Physics Letters, 2011, 99(3): 032903.
DOI: 10.1063/1.3608156
Google Scholar
[7]
Sun K, Fan R H, Zhang Z D, et al. The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range [J]. Applied Physics Letters, 2015, 106(17): 172902.
DOI: 10.1063/1.4918998
Google Scholar
[8]
Shi Z, Fan R, Yan K, et al. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability [J]. Advanced Functional Materials, 2013, 23(33): 4123-4132.
DOI: 10.1002/adfm.201202895
Google Scholar
[9]
Hou Q, Sun K, Xie P, et al. Ultrahigh dielectric loss of epsilon-negative copper granular composites[J]. Materials Letters, 2016, 169: 86-89.
DOI: 10.1016/j.matlet.2016.01.092
Google Scholar
[10]
Wu S, Sun A, Lu Z, et al. Magnetic properties of iron-based soft magnetic composites with SiO2 coating obtained by reverse microemulsion method [J]. Journal of Magnetism and Magnetic Materials, 2015, 381: 451-456.
DOI: 10.1016/j.jmmm.2015.01.030
Google Scholar
[11]
Cheng C, Yan K, Fan R, et al. Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach [J]. Carbon, 2016, 96: 678-684.
DOI: 10.1016/j.carbon.2015.10.003
Google Scholar
[12]
Hou Q, Zhang Z, Chen M, et al. Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites [J]. RSC ADVANCES, 2015, 5(13): 9472-9475.
DOI: 10.1039/c4ra15274c
Google Scholar
[13]
Wang X, Shi Z, Chen M, et al. Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method [J]. Journal of the American Ceramic Society, 2014, 97(10): 3223-3229.
DOI: 10.1111/jace.13113
Google Scholar
[14]
Wang X, Chen M, Sun K, et al. Microstructure and dielectric properties of ion-doped La0. 7Sr0. 3MnO3 lossy ceramics at radio frequencies [J]. RSC ADVANCES, 2014, 4(49): 25804-25808.
DOI: 10.1039/c4ra03364g
Google Scholar
[15]
Prasad S K, Kumar M V, Shilpa T, et al. Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal [J]. RSC Advances, 2014, 4(9): 4453-4462.
DOI: 10.1039/c3ra45761c
Google Scholar
[16]
Sun K, Li A, Cui X, et al. Sintering technology research of Fe3Al/Al2O3 ceramic composites [J]. Journal of Materials Processing Technology, 2001, 113(1): 482-485.
DOI: 10.1016/s0924-0136(01)00608-2
Google Scholar