Evolution of LPSO Structure of Mg-11Gd-4Y-2Zn-0.5Zr Alloy during Hot Compression Deformation at Different Temperatures

Article Preview

Abstract:

The deformation behavior and microstructure evolution of LPSO phase of Mg-11Gd-4Y-2Zn-0.5Zr magnesium alloy were investigated. This alloy was deformed by hot compression using Gleeeble 3500 thermal simulation machine at different temperatures. The microstructure was analyzed by optical microscopy (OM), scanning electron microscopy (SEM) with spectroscopy (EDS) and XRD. The results showed that the kink bands of LPSO structure of Mg-11Gd-4Y-2Zn-0.5Zr alloy, after thermal compression processing, aggravated as temperature increasing. The fine lamellar LPSO phase could be observed in the alloy. At 450 °Cand 500 °C, some fine lamellar LPSO phase in the grain had been broken into short rod or small block forms, meanwhile, a new rod-like LPSO structure appeared along the grain boundary. Moreover, the decomposition of LPSO structure was more obvious with the increasing of temperature. During hot compression deformation, the segregation of Y, Zr had eliminated partially and the diffraction peaks of W-phase had disappeared. Moreover, there was an increase in hardness as the dispersion distribution of LPSO phase increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-379

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Srinivasan, V.R.K. Prasad, P. Rama Rao. Hot deformation behaviour of Mg-3Al alloy-A study using processing map. Mater. Sci. Eng. A 476(2008) 146-156.

DOI: 10.1016/j.msea.2007.04.103

Google Scholar

[2] S. ANBU SELVAN,S. RAMANATHAN, Hot workability of as-cast and extruded ZE41A magnesium alloy using processing maps, Transactions of Nonferrous Metals Society of China. 21(2011)257-264.

DOI: 10.1016/s1003-6326(11)60707-3

Google Scholar

[3] X.Y. Fang D.Q. Yi,B. Wang, et al. Hot compression deformation behavior of the Mg-AI-Y-Zn magnesium alloy, RARE METALS. 27(2008) 121-125.

DOI: 10.1016/s1001-0521(08)60099-6

Google Scholar

[4] J.F. Wang, P.F. Song, X.E. Zhou, et al. Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg-5Zn-5Y-0. 6Z Magnesium alloy, Mater. Sci. Eng. A 556(2012) 68-75.

DOI: 10.1016/j.msea.2012.06.059

Google Scholar

[5] D.K. Xu, W.N. Tang, L. Liu, et al. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg-Zn-Y-Zr alloys, J. Alloys Compd. 432(2007) 129-134.

DOI: 10.1016/j.jallcom.2006.05.123

Google Scholar

[6] J.S. Zhang W.B. Zhang L.P. Bian, et al. Study of Mg-Gd-Zn-Zr alloys with long period stacking ordered structures, Mater . Sci . Eng. A 585(2013)268–276.

DOI: 10.1016/j.msea.2013.07.049

Google Scholar

[7] K. Hagihara,Y. Fukusumi, M. Yamasaki, et al. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing along-periods tacking Ordered(LPSO)phase, Mater. Sci. Eng. A 560(2013)71-79.

DOI: 10.1016/j.msea.2012.09.016

Google Scholar

[8] T. Itoi,K. Takahashi,H. Moriyama,M. Hirohashi, Scr. Mater. 59(2008) 1155–1158.

Google Scholar

[9] Y.J. Wu,X.Q. Zeng D.L. Lin L.M. Peng W.J. Ding,J. Alloys Compd. 477(2009) 193–197.

Google Scholar

[10] Y.J. Wu, X.Q. Zeng, D.L. Lin, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96. 5Gd2. 5Zn1 alloy during solid solution heat treatment at 773K, Mater. Sci. Eng. A 477(2009)193-197.

DOI: 10.1016/j.jallcom.2008.10.126

Google Scholar

[11] M. Matsuda, S. Ti, Y. Kawamura, M. Nishida, Mater. Sci. Eng. A 393 (2005) 269.

Google Scholar

[12] Y. Kawamura, M. Yamasaki, Mater. Trans. 48 (2007) 2986.

Google Scholar

[13] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Acta Mater. 55 (2007) 6798.

Google Scholar

[14] X.H. Shao Z.Q. Yang X.L. Ma, ActaMater. 58(2010)4760–4771.

Google Scholar

[15] M. Yamasaki,T. Anan, Scr. Mater. 53(2005)799–803.

Google Scholar

[16] D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, Philos. Mag. Lett. 82 (2002) 543.

Google Scholar

[17] A. Datta, U.V. Waghmare, U. Ramamurty, Acta Mater. 56 (2008) 2531.

Google Scholar

[18] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) J Mater Res 16: 1894.

Google Scholar

[19] X.Q. Zeng Y.J. Wu, et al., ActaMetall. Sin. 46(2010)1041–1046.

Google Scholar

[20] Ping Chen, Dong-Lin Li, Jian-Xiong Yi, et al. Microstructure and electronic characteristics of the 6H-type ABACAB LPSO structure in Mg97Zn1Y2 alloy,J. Alloys Compds. 485(2007)672-676.

DOI: 10.1016/j.jallcom.2009.06.045

Google Scholar

[21] Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scripta Mater. 55 (2006) 453.

Google Scholar

[22] T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, Scripta Mater. 59 (2008) 1155.

Google Scholar

[23] D.J. Li, X.Q. Zeng, J. Dong, C.Q. Zhai W.J. Ding, J. Alloys Compd. 468 (2009) 164.

Google Scholar

[24] Y. Gao, Q.D. Wang, J.H. Gu, Y. Zhao, Y. Tong, D.D. Yin, J. Alloys Compd. 477 (2009) 374.

Google Scholar

[25] Yukihiro O., Nozomu K., Akihito H. Development of high alloy wire new materials, SEI Technical Review. 56(2003): 54-58.

Google Scholar